Абсолютная сходимость. Абсолютная и условная сходимости рядов Какой ряд называют абсолютно сходящимся

Ряд

Пусть задан ряд ∑ a n {\displaystyle \sum a_{n}} и α = lim ¯ n → ∞ ⁡ | a n | n {\displaystyle \alpha =\varlimsup _{n\to \infty }{\sqrt[{n}]{|a_{n}|}}} . Тогда

Утверждение о сходимости в признаках Коши и Даламбера выводится из сравнения с геометрической прогрессией (со знаменателями lim ¯ n → ∞ ⁡ | a n + 1 a n | {\displaystyle \varlimsup _{n\to \infty }\left|{\frac {a_{n+1}}{a_{n}}}\right|} и α {\displaystyle \alpha } соответственно), о расходимости - из того, что общий член ряда не стремится к нулю.

Признак Коши сильнее признака Даламбера в том смысле, что если признак Даламбера указывает на сходимость, то и признак Коши указывает на сходимость; если признак Коши не позволяет сделать вывода о сходимости, то и признак Даламбера тоже не позволяет сделать никаких выводов; существуют ряды, для которых признак Коши указывает на сходимость, а признак Даламбера не указывает на сходимость.

Интегральный признак Коши - Маклорена

Пусть задан ряд ∑ n = 1 ∞ a n , a n ⩾ 0 {\displaystyle \sum _{n=1}^{\infty }a_{n},a_{n}\geqslant 0} и функция f (x) : R → R {\displaystyle f(x):\mathbb {R} \to \mathbb {R} } такая, что:

Тогда ряд ∑ n = 1 ∞ a n {\displaystyle \sum _{n=1}^{\infty }a_{n}} и интеграл ∫ 1 ∞ f (x) d x {\displaystyle \int \limits _{1}^{\infty }f(x)dx} сходятся или расходятся одновременно, причем ∀ k ⩾ 1 ∑ n = k ∞ a n ⩾ ∫ k ∞ f (x) d x ⩾ ∑ n = k + 1 ∞ a n {\displaystyle \forall k\geqslant 1\ \sum _{n=k}^{\infty }a_{n}\geqslant \int \limits _{k}^{\infty }f(x)dx\geqslant \sum _{n=k+1}^{\infty }a_{n}}

Признак Раабе

Пусть задан ряд ∑ a n {\displaystyle \sum a_{n}} , a n > 0 {\displaystyle a_{n}>0} и R n = n (a n a n + 1 − 1) {\displaystyle R_{n}=n\left({\frac {a_{n}}{a_{n+1}}}-1\right)} .

Признак Раабе основан на сравнении с обобщенным гармоническим рядом

Действия над рядами

Примеры

Рассмотрим ряд 1 2 + 1 3 + 1 2 2 + 1 3 2 + 1 2 3 + . . . {\displaystyle {\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{2^{3}}}+...} . Для этого ряда:

Таким образом, признак Коши указывает на сходимость, признак Даламбера же не позволяет сделать никаких заключений.

Рассмотрим ряд ∑ n = 1 ∞ 2 n − (− 1) n {\displaystyle \sum _{n=1}^{\infty }2^{n-(-1)^{n}}}

Таким образом, признак Коши указывает на расходимость, признак Даламбера же не позволяет сделать никаких заключений.

Ряд ∑ n = 1 ∞ 1 n α {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{\alpha }}}} сходится при α > 1 {\displaystyle \alpha >1} и расходится при α ⩽ 1 {\displaystyle \alpha \leqslant 1} , однако:

Таким образом, признаки Коши и Даламбера не позволяют сделать никаких выводов.

Ряд ∑ n = 1 ∞ (− 1) n n {\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{n}}{n}}} сходится условно по признаку Лейбница , но не абсолютно, так как гармонический ряд ∑ n = 1 ∞ | (− 1) n n | = ∑ n = 1 ∞ 1 n {\displaystyle \sum _{n=1}^{\infty }\left|{\frac {(-1)^{n}}{n}}\right|=\sum _{n=1}^{\infty }{\frac {1}{n}}} расходится.

, неограничена в левой окрестности точки b {\displaystyle b} . Несобственный интеграл второго рода ∫ a b f (x) d x {\displaystyle \int \limits _{a}^{b}f(x)dx} называется абсолютно сходящимся , если сходится интеграл ∫ a b | f (x) | d x {\displaystyle \int \limits _{a}^{b}|f(x)|dx} .

Знакочередующиеся ряды. Признак Лейбница.
Абсолютная и условная сходимость

Для того чтобы понять примеры данного урока необходимо хорошо ориентироваться в положительных числовых рядах: понимать, что такое ряд, знать необходимый признак сходимости ряда, уметь применять признаки сравнения, признак Даламбера, признаки Коши. Тему можно поднять практически с нуля, последовательно изучив статьи Ряды для чайников и Признак Даламбера. Признаки Коши . Логически этот урок является третьим по счёту, и он позволит не только разобраться в знакочередующихся рядах, но и закрепить уже пройденный материал! Какой-то новизны будет немного, и освоить знакочередующиеся ряды не составит большого труда. Всё просто и доступно.

Что такое знакочередующийся ряд? Это понятно или почти понятно уже из самого названия. Сразу простейший пример.

Рассмотрим ряд и распишем его подробнее:

А сейчас будет убийственный комментарий. У членов знакочередующегося ряда чередуются знаки: плюс, минус, плюс, минус, плюс, минус и т.д. до бесконечности.

Знакочередование обеспечивает множитель : если чётное, то будет знак «плюс», если нечётное – знак «минус» (как вы помните ещё с урока о числовых последовательностях , эта штуковина называется «мигалкой»). Таким образом, знакочередующийся ряд «опознается» по минус единичке в степени «эн».

В практических примерах знакочередование членов ряда может обеспечивать не только множитель , но и его родные братья: , , , …. Например:

Подводным камнем являются «обманки»: , , и т.п. – такие множители не обеспечивают смену знака . Совершенно понятно, что при любом натуральном : , , . Ряды с обманками подсовывают не только особо одаренным студентам, они время от времени возникают «сами собой» в ходе решения функциональных рядов .

Как исследовать знакочередующийся ряд на сходимость? Использовать признак Лейбница. Про немецкого гиганта мысли Готфрида Вильгельма Лейбница я рассказывать ничего не хочу, так как помимо математических трудов, он накатал несколько томов по философии. Опасно для мозга.

Признак Лейбница : Если члены знакочередующегося ряда монотонно убывают по модулю, то ряд сходится.

Или в два пункта:

1) Ряд является знакочередующимся.

2) Члены ряда убывают по модулю: , причём, убывают монотонно.

Если выполнены эти условия, то ряд сходится .

Краткая справка о модуле приведена в методичке Горячие формулы школьного курса математики , но для удобства ещё раз:

Что значит «по модулю»? Модуль, как мы помним со школы, «съедает» знак «минус». Вернемся к ряду . Мысленно сотрём ластиком все знаки и посмотрим на числа . Мы увидим, что каждый следующий член ряда меньше , чем предыдущий. Таким образом, следующие фразы обозначают одно и то же:

– Члены ряда без учёта знака убывают.
– Члены ряда убывают по модулю .
– Члены ряда убывают по абсолютной величине .
Модуль общего члена ряда стремится к нулю:

// Конец справки

Теперь немного поговорим про монотонность. Монотонность – это скучное постоянство.

Члены ряда строго монотонно убывают по модулю, если КАЖДЫЙ СЛЕДУЮЩИЙ член ряда по модулю МЕНЬШЕ, чем предыдущий: . Для ряда выполнена строгая монотонность убывания, её можно расписать подробно:

А можно сказать короче: каждый следующий член ряда по модулю меньше, чем предыдущий: .

Члены ряда нестрого монотонно убывают по модулю, если КАЖДЫЙ СЛЕДУЮЩИЙ член ряда по модулю НЕ БОЛЬШЕ предыдущего: . Рассмотрим ряд с факториалом: Здесь имеет место нестрогая монотонность, так как первые два члена ряда одинаковы по модулю. То есть, каждый следующий член ряда по модулю не больше предыдущего: .

В условиях теоремы Лейбница должна выполняться монотонность убывания (неважно, строгая или нестрогая). Кроме того, члены ряда могут даже некоторое время возрастать по модулю , но «хвост» ряда обязательно должен быть монотонно убывающим.

Не нужно пугаться того, что я нагородил, практические примеры всё расставят по своим местам:

Пример 1

В общий член ряда входит множитель , и это наталкивает на естественную мысль проверить выполнение условий признака Лейбница:

1) Проверка ряда на знакочередование. Обычно в этом пункте решения ряд расписывают подробно и выносят вердикт «Ряд является знакочередующимся».

2) Убывают ли члены ряда по модулю? Здесь нужно решить предел , который чаще всего является очень простым.

– члены ряда не убывают по модулю, и из этого автоматически следует его расходимость – по той причине, что предела не существует *, то есть, не выполнен необходимый признак сходимости ряда .

Пример 9

Исследовать ряд на сходимость

Пример 10

Исследовать ряд на сходимость

После качественной проработки числовых положительных и знакопеременных рядов с чистой совестью можно перейти к функциональным рядам , которые не менее монотонны и однообразны интересны.

Пример 2.

Исследовать, сходится ли ряд .

Поскольку

То ряд сходится.

Интегральный признак сходимости

Интегральный признак сходимости выражается следующей теоремой

Теорема 1.8.

Дан ряд с положительными членами

Если при функция непрерывна, положительна и не возрастает, а в точках принимает значения , то ряд (1.23) и несобственный интеграл (1.24) одновременно сходятся или расходятся.

Доказательство.

Если , то , откуда

;

Если интеграл (1.24) сходится и , то при любом натуральном . Следовательно,

.

Так как монотонно возрастающая и ограниченная последовательность, то существует , т.е. ряд (1.23) также сходится. Если ряд (1.23) сходится и , то при любом .

Из равенства (1.26) следует, что при любом . Несобственный интеграл также сходится.

С помощью интегрального признака можно доказать, что ряд

(1.27)

где любое вещественное число, сходится при и расходится при .

Действительно, сходится при и расходится при .

Знакочередующиеся ряды. Признак Лейбница

Знакочередующимся рядом называется ряд, у которого любые два члена с номерами и имеют противоположные знаки, т.е. ряд вида

(1.30)

Доказательство.

Рассмотрим частичные суммы ряда (1.28) с четными и нечетными номерами:

Преобразуем первую из этих сумм:

В силу условия (1.29) разность в каждой скобке положительна, поэтому сумма и для всех . Итак, последовательность четных частичных сумм является монотонно возрастающей и ограниченной. Она имеет предел, который обозначим через , т.е. . Поскольку , то, принимая во внимание предыдущее равенство и условие (1.30), получаем



Итак, последовательность частичных сумм данного ряда соответственно с четными и нечетными номерами имеют один и тот же предел . Отсюда следует, что последовательность всех частичных сумм ряда имеет предел ; т.е. ряд сходится.

Пример.

Исследовать, сходится ли ряд

(1.31)

Этот ряд является знакочередующимся. Он сходится, поскольку удовлетворяет условиям теоремы

Оценка остатка знакочередующегося ряда определяется с помощью следующей теоремы.

Теорема 1.10.

Сумма остатка знакочередующегося ряда, удовлетворяющего условиям теоремы Лейбница, имеет знак первого оставшегося члена и не превосходит его по модулю.

Доказательство.

Рассмотрим остаток ряда (1.28) после членов. Пусть его сумма, -я частичная сумма, тогда

Так как выполнены условия теоремы 1.9, то и при всех , т.е. , откуда

или

Аналогично доказывается, что сумма остатка ряда после членов удовлетворяет условиям , т.е. и .

Следовательно, независимо от четности или нечетности

Рассмотрим ряд, составленный из модулей членов данного ряда:

(1.34)

Теорема 1.11.

Если ряд (1.34) сходится, то сходится и ряд (1.33).

Доказательство.

Поскольку ряд (1.34) сходится, то в силу критерия Коши (теорема 1.1) для любого существует такой номер , то при всех и любом целом выполняется неравенство

.

То . Это означает, что ряд (1.33) также сходится.

Замечание.

Из сходимости ряда (1.33) не следует сходимость ряда (1.34). Например, ряд сходится (см. п. 1.6), а ряд из модулей его членов расходится (гармонический ряд, см. п. 1.2).

абсолютно сходящимся, если сходится ряд из модулей его членов. Например, ряд

является абсолютно сходящимся, поскольку сходится ряд из модулей его членов, т.е. ряд (геометрическая прогрессия со знаменателем , ).

Знакопеременный ряд называется неабсолютно сходящимся (условно сходящимся), если он сходится, а ряд из модулей его членов расходится. Например, ряд является неабсолютно сходящимся (см. замечание).

Действия над рядами.

Произведением ряда

Теорема 1.12.

Если ряд (1.35) сходится, то ряд (1.36) также сходится, причем

(1.37)

Доказательство.

Обозначим через и - е частичные суммы рядов (1.35) и (1.36), т.е.

Очевидно, . Если ряд (1.35) сходится и его сумма равна , т.е. , , то

Кроме ряда (1.35) рассмотрим ряд

также сходится абсолютно и его сумма равна

Замечание.

Правила действия над рядами не всегда совпадают с правилами действий над конечными суммами. В частности, в конечных суммах можно произвольно менять порядок слагаемых, как угодно группировать члены, сумма от этого не изменится. Слагаемые конечной суммы можно складывать в обратном порядке, для ряда такой возможности нет, ибо у него не существует последнего члена.

В ряде не всегда можно группировать члены. Например, ряд

является расходящимся, так как

и нет предела его частичных сумм. После группировки членов

получаем сходящийся ряд, его сумма равна нулю. При другой группировке членов

получаем сходящийся ряд, сумма которого равна единице.

Приведем без доказательства две теоремы.


Теорема 1.14.

Перестановка членов абсолютно сходящегося ряда не нарушает его сходимости, сумма ряда при этом остается прежней.

Теорема 1.15.

Если ряд сходится неабсолютно, то путём надлежащей перестановки его членов всегда можно придать сумме ряда произвольное значение и даже сделать ряд расходящимся.


с (вообще говоря) комплексными членами, для к-рого сходится ряд

Для абсолютной сходимости ряда (1) необходимо и достаточно (критерий Коши абсолютной сходимости ряда), чтобы для любого существовал такой номер , что для всех номеров и всех целых выполнялось


Если ряд абсолютно сходится, то он сходится. Ряд


абсолютно сходится а ряд


сходится, но не абсолютно. Пусть

Ряд, составленный из тех же членов, что и ряд (1), но взятых, вообще говоря, в другом порядке. Из абсолютной сходимости ряда (1) следует и абсолютная ряда (3), и ряд(З) имеет ту же самую сумму, что и ряд (1). Если ряды


абсолютно сходятся, то: любая их линейная комбинация


также абсолютно сходится; ряд, полученный из всевозможных попарных произведений членов этих рядов, расположенных в произвольном порядке, также абсолютно сходится и его сумма равна произведению сумм данных рядов. Перечисленные свойства абсолютно сходящихся рядов переносятся и на кратные ряды

абсолютно сходится, т. е. абсолютно сходятся все ряды, получающиеся последовательным суммированием членов ряда (4) по индексам причем суммы кратного ряда (4) и повторного (5) равны и совпадают с суммой любого однократного ряда, образованного из всех членов ряда (4).

Если члены ряда (1) суть элементы нек-рого банахова пространства с нормой элементов то ряд (1) наз. абсолютно сходящимся, если сходится ряд


На случай А. с. р. элементов банахова пространства также обобщаются рассмотренные выше свойства абсолютно сходящихся числовых рядов, в частности А. с. р. элементов банахова пространства сходится в этом пространстве. Аналогичным образом понятие А. с. р. переносится и на кратные ряды в банаховом пространстве.


Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Смотреть что такое "АБСОЛЮТНО СХОДЯЩИЙСЯ РЯД" в других словарях:

    Функциональный ряд (1) с (вообще говоря) комплексными членами, сходящийся на множестве X, и такой, что для любого e>0 существует номер ne , что для всех n>ne и всех выполняется неравенство где и Иными словами, последовательность частичных… … Математическая энциклопедия

    Содержание. 1) Определение. 2) Число, определяемое рядом. 3) Сходимость и расходимость рядов. 4) Условная и абсолютная сходимость. 5) Равномерная сходимость. 6) Разложение функций в ряды. 1. Определения. Р. есть последовательность элементов,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Б е с к о н е ч н а я с у м м а, последовательность элементов (наз. ч л е н а м и д а н н о г о р я д а) нек рого линейного топологич. пространства и определенное бесконечное множество их конечных сумм (наз. ч а с т и ч н ы м и с у м м а м и р я… … Математическая энциклопедия

    Ряд, бесконечная сумма, например вида u1 + u2 + u3 +... + un +... или, короче, . (1) Одним из простейших примеров Р., встречающихся уже в элементарной математике, является сумма бесконечно убывающей геометрической прогрессии 1 + q + q 2 +... + q… …

    I бесконечная сумма, например вида u1 + u2 + u3 +... + un +... или, короче, Одним из простейших примеров Р., встречающихся уже в элементарной математике, является сумма бесконечно убывающей… … Большая советская энциклопедия

    Последовательность функций, которые в незаштрихованной области сходятся к натуральному логарифму (красный). В данном случае это N я частичная сумма степенного ряда, где N указывает на число слагаемых. Функциональный ряд … Википедия

    S кратный ряд, выражение вида составленное из членов таблицы Каждый член этой таблицы занумерован индексами т, п, . . . , р, к рые пробегают независимо друг от друга все натуральные числа. Теория К. р. аналогична теории двойных рядов. См. также… … Математическая энциклопедия

    Ряд по косинусам и синусам кратных дуг, т. е. ряд вида или в комплексной форме где ak, bk или, соответственно, ck наз. коэффициентами Т. р. Впервые Т. р. встречаются у Л. Эйлера (L. Euler, 1744). Он получил разложения В сер. 18 в. в связи с… … Математическая энциклопедия

    Ряд где функции, голоморфные в нек рой не зависящей от kобласти Если для всех, то ряд (*) наз. рядом Гартогса. Всякая функция, голоморфная в Гартогса области D вида разлагается в абсолютно и равномерно сходящийся внутри DГ. Л. р. В полных… … Математическая энциклопедия