Близнецовый метод в генетике его значение. Близнецовый метод изучения генетики человека

Метод введен в медицинскую практику Ф. Гальтоном в 1876 г. Он позволяет определить роль генотипа и среды в прояв­лении признаков. Суть метода заключается в сравнении проявления признаков в разных группах близнецов при учете сходства и различия их генотипов.

Различают моно- и дизиготных близнецов. Монози­готные (однояйцевые) близнецы развиваются из одной оплодотворенной яйцеклетки. Монозиготные близнецы имеют совершенно одинаковый генотип и, если они отли­чаются фенотипически, то это обусловлено воздействием факторов внешней среды.

Дизиготные (двуяйцевые) близнецы развиваются пос­ле оплодотворения сперматозоидами нескольких одновре­менно созревших яйцеклеток. Близнецы будут иметь раз­ный генотип и их фенотипические различия обусловлены как генотипом, так и факторами внешней среды.

Монозиготные близнецы имеют большую степень сход­ства по признакам, которые определяются в основном генотипом. Например, монозиготные близнецы всегда од­нополы, у них одинаковые группы крови по разным сис­темам (АВО, RH, МN и др.)» одинаковый цвет глаз, одно­типны дерматоглифические показатели на пальцах и ла­донях и др. Эти фенотипическке признаки и используют­ся в качестве критериев диагностики зиготности близ­нецов.

Процент сходства группы близнецов по изучаемому признаку называется конкордантностью, а процент раз­личия – дискордантностью (рис.11.6). Так как монозиготные близнецы имеют одинаковый генотип, то конкордантность их выше, чем у дизиготных.

Генетическая предрасположенность к наследственным и многофакторным заболеваниям определяется с помощью близнецового метода следующим образом:

      Если заболевание обусловлено только наследственными факторами, то КМБ=100%, КДБ=25-50%.

      При МФЗ – низкий уровень конкордантности для МЗБ и ДЗБ.

      КМБ=КДБ – ведущая роль среды.

Для оценки роли наследственности и среды в разви­тии того или иного признака используют формулу Хольцингера (рис.11.7):

где Н – доля наследственности,

C MZ – конкордан­тность монозиготных близнецов,

C DZ – конкордант­ность дизиготных близнецов.

При Н=100% признак полностью определяется наследственным компонентом. При Н=0 – средовым. При Н=50% - одинакова роль наследственности и среды (МФЗ).

Биохимический метод

Основан на изучении активности ферментных систем (либо по активности са­мого фермента, либо по количеству конечных продуктов реакции, катализируемой данным ферментом). Они позволяют выявлять генные мутации – причины болезней обмена веществ (например, фенилкетонурия, серповид­но-клеточная анемия).

С помощью биохимических нагрузочных тестов мож­но выявлять гетерозиготных носителей патологических генов, например, фенилкетонурии. Исследуемому челове­ку вводят внутривенно определенное количество амино­кислоты фенилаланина и через равные промежутки вре­мени определяют его концентрацию в крови. Если чело­век гомозиготен по доминантному гену (АА), то концент­рация фенилаланина в крови довольно быстро возвраща­ется к контрольному уровню (определяется до введения фенилаланина), а если он гетерозиготен (Аа), то сниже­ние концентрации фенилаланина идет вдвое медленнее.

Аналогично проводятся тесты, выявляющие предрас­положенность к сахарному диабету, гипертонии и др. бо­лезням.

Среди методов генетического анализа наряду с генеалогическим большое значение имеет близнецовый метод. В какой мере признак зависит от наследственных особенностей организма, т. е. от его генотипа, и в какой - от условий внешней среды? Этот вопрос касается самых различных признаков человека: особенностей строения организма, физиологических функций, наследственных болезней, таких специфических черт человека, как типологические свойства высшей нервной деятельности и психики. В решении этих вопросов существенное место принадлежит близнецовому методу генетики. С его помощью получены убедительные доказательства того, что индивидуальные свойства человека формируются, складываются в процессе его развития под влиянием как наследственных факторов, так и физической и социальной среды. Это в полной мере относится и к патогенезу наследственных болезней. Более того, близнецовый метод позволил оценить относительную роль, удельный вес генетических и средовых факторов в развитии каждого конкретного признака.

Близнецы у человека имеют разное происхождение. Однояйцовые, или монозиготные (MZ), близнецы развиваются из одного оплодотворенного яйца (одной зиготы) вследствие ее разделения с образованием двух эмбрионов. Партнеры монозиготной пары имеют полностью идентичные генотипы, и все различие их признаков зависит только от условий среды. Разнояйцовые, или дизиготные (DZ), близнецы рождаются тогда, когда созревают одновременно две яйцеклетки, оплодотворяемые двумя спермиями. Партнеры дизиготной пары генотипически различны. Они сходны между собой не более, чем братья и сестры, рожденные порознь. Однако, благодаря одновременному рождению при совместном воспитании у них будет значительная общность среды. Различие их признаков обусловлено в основном неидентичным генотипом.

Соотношение моно- и дизиготных близнецов в популяции, т. е. компонента многоплодия, определяется различным путем, в том числе методом Вайнберга, который основывается на возможной одно- и разнополости дизиготных близнецов. Вероятность оплодотворения второй яйцеклетки спермиями, несущими хромосомы X или У, равна 50 %, т. е. вероятности рождения одно- или разнополых дизиготных близнецов примерно равны. Таким образом, разнополые близнецы составляют 50 % всех дизиготных близнецов и, следовательно, их общее число равно удвоенному числу разнополых близнецов в данной выборке. Число монозиготных близнецов соответствует разности общего числа близнецов и удвоенного числа разнополых близнецов.

Коэффициент дизиготной близнецовости (d) показывает, какое число дизиготных пар рождается в данной популяции или выборке на 1000 родов. Его определяют по формуле: d = 2U/N x 1000, где U - число разнополых DZ-пар, а N - общее число родов в выборке. Коэффициент монозиготной близнецовости (m) вычисляют по формуле: m = L-2U/N x 1000, где L - общее число близнецов в изученной выборке. Использование этих коэффициентов позволяет сравнивать частоту моно- и дизиготных близнецов в разных выборках.

Основу любого близнецового исследования составляет диагностика зиготности партнеров пары, т. е. установление факта моно- или дизиготного происхождения близнецов. В основе диагностики зиготности лежит изучение сходства (конкордантности) и различия (дискордантности) партнеров близнецовой пары по совокупности таких признаков, которые мало изменяются под влиянием среды. Метод, получивший название поли-симптомного (метод сходства, подобия), включает в себя исследование конкордантности и дискордантности близнецов по таким признакам, как цвет и форма волос, цвет и разрез глаз, форма ушей, бровей, носа, губ, подбородка и др. Для каждого из этих признаков разработаны балльные и иные шкалы оценок, которые позволяют, сравнивая эти оценки у партнеров пары близнецов, поставить правильный диагноз. В принципе монозиготные близнецы должны быть конкордантны по всей совокупности признаков, используемых при методе подобия, в то время как дизиготные по части признаков дискордантны. К недостаткам метода относятся его субъективизм, возможность изменения внешних признаков монозиготных партнеров под действием средовых факторов, а также невозможность его использования у детей раннего возраста.

К другим методам диагностики зиготности близнецов относятся: иммуногенетический, когда близнецов-партнеров сравнивают по эритроцитарным антигенам (системы групп крови ABO, MN, Rh, P и др.), составу белков сыворотки крови, гаплотипам системы HLA. Эти менделирующие признаки не изменяются в течение жизни индивида, не зависят ни от каких внешних факторов, т. е. со всех точек зрения являются идеальными генетическими маркерами. При отсутствии ошибок определения даже единственное различие будет свидетельствовать о дизиготности близнецов. Для диагностики зиготности используют также данные дерматоглифики (исследование кожного рельефа пальцев рук и ладоней), изучение способности чувствовать вкус особого вещества - фенилтиокарбамида, которая наследуется как моногенный признак.

В больших близнецовых выборках, т. е. в популяционных исследованиях близнецов, целесообразно применять метод анкетирования. Близнецам рассылается анкета, содержащая перечень вопросов относительно сходства близнецов и наличия случаев ошибок при их узнавании родителями, учителями, друзьями.

Сущность близнецового метода заключается в сравнении внутрипарного сходства в группах моно- и дизиготных близнецов, что позволяет с помощью специальных формул оценить относительную роль наследственности и факторов среды в развитии каждого конкретного признака. При исследовании качественных признаков внутрипарное сходство оценивают по принципу "подобны - различны". Пары, в которых партнеры подобны друг другу по данному признаку, называются конкордантными. Если один из партнеров обладает данным признаком, а второй нет, то пара называется дискордантной. Например, по группе крови пара считается конкордантной, если оба партнера имеют одну группу, но если группа крови партнеров различна, то пара дискордантна. Для доказательства роли наследственности в развитии признака достаточно сравнить долю (процент) конкордантных пар в группах моно- и дизиготных близнецов.

Рассмотрим это на примере сахарного диабета. Если один из монозиготных близнецов болен диабетом, то второй партнер заболевает в 65 % случаев (в 65 % случаев они конкордантны). Если один из дизиготных близнецов заболел диабетом, то второй заболевает только в 18 % случаев. Большая конкордантность в группе генетически идентичных партнеров монозиготных пар доказывает, что в этиологии диабета наследственное предрасположение играет существенную роль.

Для количественной оценки роли наследственности и среды применяют различные формулы. Чаще всего пользуются коэффициентами наследуемости (Н) и влияния среды (Е), вычисляемыми по формуле Хольцингера:

C MZ - C DZ H = --------- x 100; E = 100 - H 100 - C DZ

где C MZ - процент конкордантных пар в группе монозиготных, a C DZ - то же в группе дизиготных близнецов, в приведенном выше примере сахарного диабета доля наследственной обусловленности признака составляет: H = (65-18)/(100-18) x 100 = 57%, а влияние среды Е = 100 - 57= 43 %. Результаты вычислений по формулам Хольцингера подтверждают, что заболевание диабетом обусловлено генетическими факторами не меньше, чем условиями среды.

Используем формулу Хольцингера еще в двух примерах. Предположим, что признак (группа крови) целиком обусловлен генотипом и не зависит от воздействия среды. В этом случае в группе монозиготных близнецов конкордантность партнеров полная в силу идентичности их генотипов (C MZ = 100%), а конкордантность в группе дизиготных близнецов, определяемая случайным сочетанием генов их родителей, будет неполной, например, 40 % (C DZ = 40 %). Подставляя эти значения в формулу Хольцингера, получим: H = (100-40)/(100-40) x 100 = 100%;

Иной результат получается для признака, развитие которого не зависит от генотипа и полностью обусловлено влиянием среды (так бывает при некоторых инфекционных болезнях). В этом случае процент конкордантных пар в группах моно- и дизиготных близнецов один и тот же, например, по 90 % в обеих группах. Подставляя эти значения конкордантности в формулу Хольцингера, получим Н = 0 %, Е = 100 %. Следовательно, коэффициент наследуемости для разных признаков различен; он изменяется от 100 % для признаков, полностью обусловленных генетическими факторами, до 0 % для признаков, целиком зависящих от влияния среды. В большинстве случаев развитие признаков определяется совместным влиянием генотипа и условий среды, тогда коэффициент наследуемости меньше 100 % и больше 0 %, причем он тем больше, чем сильнее влияние генетического фактора.

Коэффициент наследуемости можно вычислить и для количественных признаков, при которых партнеры пары отличаются друг от друга не по альтернативе "конкордантны - дискордантны", а по выраженности признака. В этих случаях коэффициент наследуемости вычисляют по несколько измененной формуле Хольцингера:

R MZ - r DZ H = ----------- 100; Е = 100 - Н, 1 - r DZ
где r MZ - коэффициент внутриклассовой корреляции в группе монозиготных, a r DZ - то же в группе дизиготных близнецов.

Математический аппарат близнецового анализа в последние годы значительно расширился, что позволяет в ряде случаев получить дополнительные сведения об относительном значении генотипа и среды в онтогенезе признаков организма.

Рассмотрим, что дал близнецовый метод при оценке удельного веса наследственных и средовых факторов в развитии отдельных признаков человека.

Остановимся на крайнем случае преобладающего влияния генетических факторов: группы крови полностью обусловлены генотипом и никакие условия среды, совместимые с жизнью, не приводят к их изменению. Монози-готные близнецы всегда конкордантны по группам крови. Коэффициент наследуемости, вычисленный по формуле Хольцингера, равен 100 %. Это же относится и ко всем тем случаям, когда ген непосредственно программирует признак, являясь его матрицей. Примером могут служить первичная структура ферментов, электрофоретические варианты белков плазмы крови и др. Однако, чем длиннее цепь процессов развития признака, отделяющая его от гена, тем больше может быть влияние среды.

Таблица 4. Частота заболевания обоих близнецов при некоторых видах патологии
Болезнь Частота заболевания второго близнеца в выборках, %
MZ DZ
Корь 98 94
Коклюш 97 93
Паротит 82 74
Туберкулез 67 23
Ревматизм 47 17
Сахарный диабет 65 18
Эпилепсия 67 3
Шизофрения 69 10
Врожденное сужение привратника желудка 67 3
Врожденный вывих бедра 41 3
Расщелина неба 33 5
Косолапость 32 3

Перейдем к оценке роли генетических и средовых факторов в патогенезе различных заболеваний человека. При инфекционных болезнях (бактериальной, вирусной инфекции) роль внешней среды очевидна. Еще недавно считали чуть ли не абсурдом предполагать зависимость этих болезней от наследственных факторов. Однако данные, полученные с помощью близнецового метода, заставили в ряде случаев изменить это представление (табл. 4). Данные табл. 4 показывают, что при заболевании корью и коклюшем одного из партнеров близнецовой пары вероятность заболевания второго (конкордантность пары) в группах моно- и дизиготных близнецов практически одинаковая. Преобладающая роль инфекционного фактора в этих случаях вполне отчетлива. Однако, при заболевании одного из близнецов паротитом частота заболевания второго партнера в монозиготной паре несколько больше, чем в дизиготной. Еще более очевидно это при туберкулезе. Вероятность заболевания второго близнеца в монозиготной паре почти в 3 раза больше, чем в дизиготной. Следовательно, при идентичном генотипе сходная реакция на внешний фактор (туберкулезная инфекция) наступает чаще, чем при разных генотипах, что доказывает существенную роль генетических факторов. Более того, исследование конкордантности моно- и дизиготных близнецов при туберкулезе и некоторых других болезнях позволило показать (в этом видны уникальные возможности близнецового метода), что высокая конкордантность заключается не только в сходстве по возникновению болезни (заболел - не заболел), но и в ее клинических формах и локализации процесса. Монозиготные близнецы значительно чаще болеют формами туберкулеза, тождественными по течению и исходу.

При многих хронических внутренних болезнях, психических болезнях и пороках развития различия в частоте заболеваемости второго близнеца при болезни первого среди монозиготных близнецов значительно выше, чем среди дизиготных (см. табл. 4). Следовательно, в возникновении многих болезней наряду с факторами внешней среды в большей или меньшей степени участвует наследственный фактор. Это позволило открыть генетическое предрасположение к болезням, и близнецовый метод сыграл в исследовании этого явления немаловажную роль.

Остановимся кратко на морфологических признаках строения тела и черт лица. Среди них можно отметить такие, по которым у монозиготных близнецов наблюдается высокая (близкая к 100%) конкордантность при значительной дискордантности дизиготных. Так, по форме бровей, носа, губ и ушей, цвету глаз, волос и кожи монозиготные близнецы конкордантны в 97-100 %, а дизиготные (в зависимости от признака) - в 70-20 % случаев. Следовательно, эти признаки мало зависят от влияния факторов внешней среды. Из количественных признаков рост меньше зависит от условий среды, чем масса тела. Среднее внутрипарное различие роста у монозиготных близнецов составляет 1,7 см, а дизиготных - 4,4 см. Масса тела больше зависит от питания и расхода энергии.

Для иллюстрации наследуемости физиологических признаков рассмотрим пример артериального давления. Критерием конкордантности по этому постоянно меняющемуся признаку служило сходство между партнерами в определенных пределах (5 мм рт. ст.). Такая конкордантность была отмечена у 63 % монозиготных и только у 36 % дизиготных близнецов.

С помощью близнецового метода исследовали некоторые онтогенетические характеристики, несомненно зависящие от действия совокупности факторов. Для выяснения вопроса, зависит ли от наследственных факторов время первой менструации у девочек, определяли внутрипарное различие возраста, в котором началась первая менструация. Оказалось, что в монозиготных парах различие составляет в среднем 3 мес, а в дизиготных - 13 мес.

Весьма важен вопрос о том, зависит ли от наследственных факторов продолжительность жизни человека или она целиком определяется условиями внешней среды. Выяснить этот вопрос мог только близнецовый анализ. Сравнение внутрипарного различия продолжительности жизни в группах моно- и дизиготных близнецов показало, что долголетие в определенной мере обусловлено генетическими факторами. Долгожительство в некоторых местностях земного шара нельзя объяснить только благоприятными условиями среды (горный климат, особый режим питания и труда). Хотя влияние этих факторов не вызывает сомнений, существенную роль играет и генотип.

Для педиатров, психологов и педагогов определенный интерес представляет генетическая и средовая детерминация типа высшей нервной деятельности, психологических свойств и характеристик интеллекта. Почему у детей различные способности к музыке, математике, рисованию? В какой мере признаки интеллекта зависят от наследственных факторов, а в какой - от физической и социальной среды? В решении этих вопросов большое место занимают данные, полученные на близнецах, а именно, изучение конкордантности партнеров в группах моно- и дизиготных близнецов.

Остановимся на роли наследственных и средовых факторов в развитии одаренности ребенка. Всесторонняя одаренность - крайне редкое явление. Талантливый музыкант может быть бездарным в области математики, а выдающийся математик - совершенно неспособным к живописи. Способности следует изучать по отношению к тому или другому конкретному виду деятельности. Исследование конкордантности показало, что партнеры мо-нозиготных пар обычно проявляют способности к одному и тому же виду деятельности, а дизиготные партнеры - к различным видам. Многочисленные примеры приведены в монографии И. И. Канаева (1959).

Известные музыканты, дирижеры оркестров Вольф и Вилли Гайнц были монозиготными близнецами. Их внешнее сходство было столь велико, что даже их учитель музыкант Регер не мог различить их. Внешнее сходство дополнялось поражающим сходством в пристрастии к произведениям определенных композиторов, трактовке произведений и манере дирижировать. Подготовив одну и ту же оперу каждый в своем оркестре, они могли в случае нужды заменить друг друга. При этом ни исполнители - певцы и оркестранты, ни публика не замечали, что дирижирует другой человек. Сходство монозиготных близнецов не всегда бывает таким полным. И. И. Канаев приводит другой пример. Монозиготные сестры-органистки, по свидетельству их учителя проф. И. А. Браудо, были чрезвычайно похожи по признакам музыкального дарования - слуху, музыкальной памяти, исполнительским данным, но различались по интерпретации произведений.

Многочисленные примеры высокой конкордантности монозиготных близнецов, никак не проявляющейся столь полно у дизиготных, убедительно доказывают, что и признаки психики, способности, признаки интеллекта в определенной мере обусловлены генотипом. Однако это отнюдь не исключает значительной, иногда определяющей роли физической и социальной среды.

Близнецовый метод позволил доказать основной закон генетики развития: индивидуальные свойства каждого организма формируются, складываются в онтогенезе под контролем генотипа и среды. Закон взаимодействия наследственных факторов с физической и социальной средой справедлив для любых признаков человека, особенностей строения его тела, физиологических функций, патологии. Ему подчиняется и развитие таких сложных признаков, как тип высшей нервной деятельности, особенности психики, способности и склонности. Никакие условия социальной среды, никакой труд талантливых наставников, никакие упражнения, тренировки, обучение не воспитают выдающегося художника, певца, математика, спортсмена из ребенка, не имеющего соответствующих наследственных задатков. Однако эти задатки не смогут полностью проявиться без соответствующих условий. Необходимым условием их развития является социальная среда - воспитание, обучение, опытное руководство и систематический труд.

Закон взаимодействия наследственности и среды в развитии признаков человека в наше время не требует новых доказательств, хотя до сих пор среди врачей, педагогов и психологов можно встретить сторонников как абсолютной роли воспитания и среды, так и фатального значения наследственности. Их споры - эхо давно отшумевших бурь, попытка ревизовать основной закон генетики развития.

Значение близнецового метода в медицинской генетике этим не ограничивается. По мере разработки теоретических основ близнецового метода постепенно сформировался особый раздел этих исследований - метод контроля по партнеру. Область его применения чрезвычайно разнообразна и выходит далеко за пределы узко генетических исследований. Значение контроля по партнеру в анализе фенотипической вариации индивидуального генотипа, генетике развития, фенотипических проявлений наследственных аномалий также непрерывно растет.

В методе контроля по партнеру "используют" только монозиготных близнецов. Априорная идентичность их генотипов, которая позволяет рассматривать партнеров в генетическом плане как одного человека, дает возможность очень точно и демонстративно оценить эффект того или иного внешнего воздействия, если один партнер подвергается действию этого фактора, а другой не подвергается и служит контролем. Предположим, что для лечения определенного заболевания предлагается новый лекарственный препарат. После многочисленных лабораторных исследований препарат передают на клинические испытания. Необходимо проверить его эффективность у больных. Для этого обычно большую группу больных делят на две части. Первые получают новый препарат, а вторые - нет (их лечат прежними методами). Через определенное время сравнивают результаты лечения. Если препарат действительно эффективен, то среди принимавших его выздоровевших лиц или лиц с улучшением состояния будет больше, чем среди леченных другими методами. Однако индивидуальная чувствительность к любому препарату чрезвычайно гетерогенна, вариабельна. Она зависит от генетических факторов, а также от возраста больных, особенностей патологического процесса и многих других причин, которые и в "опытной", и в контрольной группах могут быть разными. Обе эти группы обычно стараются сделать достаточно представительными, в них включают сотни, а иногда и тысячи больных, чтобы затем, пользуясь специальными статистическими методами, нивелировать все параметры в обеих группах и получить достоверную информацию о действии нового препарата. Из этого видно, какие поистине уникальные возможности открывает перед фармакологией и фармакогенетикой (наукой, изучающей генетические основы чувствительности к лекарственным препаратам) близнецовый метод контроля по партнеру. "Используя" монозиготных близнецов, конкордантных по болезни, когда один партнер каждой пары получает новый препарат, а второй служит "контролем", можно получить совершенно объективные сведения об эффективности препарата. В этом случае почти исчезают многочисленные ограничения по генетическим, физиологическим и средовым факторам, влияющим на чувствительность к препарату. Такие исследования на близнецовой модели выгодны и в экономическом плане - они требуют лишь 20-30 пар.

Метод контроля по партнеру в последнее время успешно используется. Он позволяет оценить лечебный эффект новых фармакологических средств при разных способах введения, исследовать фазы их действия, показать различия фармакокинетики новых и старых препаратов. Например, Р. М. Заславская и соавт. (1981) на ограниченном числе близнецовых пар достоверно доказали различие в действии нового антиангинального препарата нонахлазина и широко используемого в клинике курантила. Близнецовый метод все шире применяется в клинической генетике и фармакологии.

Молекулярные основы наследственной патологии Ферментопатии Лечение наследственных болезней Заместительная терапия Витаминотерапия Индукция и ингибиция метаболизма Хирургическое лечение Диетотерапия Эффективность лечения мультифакториальных болезней в зависимости от степени наследственного отягощения у больных Разрабатываемые методы лечения Профилактика врожденной патологии у женщин из групп повышенного риска Клиническая фармакогенетика Наследственные дефекты ферментных систем, выявляемые при применении лекарств Атипичные реакции на лекарства при наследственных болезнях обмена веществ Наследственная обусловленность кинетики и метаболизма лекарств Генетические основы тестирования индивидуальной чувствительности к лекарствам Медико-генетическое консультирование Задачи и показания для проведения консультации Принципы консультирования Этапы консультирования Пренатальная диагностика врожденных пороков развития и наследственных болезней Проблемы медико-психологической реабилитации больных с врожденными болезнями и членов их семей Умственная отсталость Дефекты зрения и слуха Аномалии опорно-двигательного аппарата Приложения Блок информации N 1 - ишемическая болезнь сердца Блок информации N 2 - сахарный диабет Блок информации N 3 - язвенная болезнь Блок информации N 4 - врожденные пороки развития на примере расщелины губы и/или неба Литература [показать]

  1. Андреев И. О фавизме и его этиопатогенезе//Современные проблемы физиологии и патологии детского возраста. - М.: Медицина, 1965. - С. 268-272.
  2. Анненков Г. А. Диетотерапия наследственных болезней обмена веществ//Вопр. питания. - 1975. - № 6. - С. 3-9.
  3. Анненков Г. А. Генная инженерия и проблема лечения наследственных болезней человека//Вестн. АМН СССР. - 1976. - № 12. - С. 85-91.
  4. Барашнев Ю. И., Вельтищев Ю. Е. Наследственные болезни обмена веществ у детей. - Л.: Медицина, 1978. - 319 с.
  5. Барашнев Ю. И., Розова И. Н., Семячкина А. Н. Роль витамина Be в лечение детей с наследственной патологией обмена веществ//Вопр. питания. - 1979. - № 4. - С. 32-40.
  6. Барашнев Ю. И., Руссу Г. С., Казанцева Л. 3. Дифференциальный диагноз врожденных и наследственных заболеваний у детей. - Кишинев: Штиинца, 1984. - 214 с,
  7. Барашнева С. М., Рыбакова Е. П. Практический опыт организации и применения диетического лечения при наследственных энзимопатиях у детей//Педиатрия. - 1977. - № 7. - С. 59-63.
  8. Бочков Н. П. Генетика человека. - М.: Медицина, 1979. - 382 с.
  9. Бочков Н. П., Лильин Е. Т., Мартынова Р. П. Близнецовый метод//БМЭ. - 1976. - Т. 3. - С. 244-247.
  10. Бочков Н. П., Захаров А. Ф., Иванов В. П. Медицинская генетика.- М.: Медицина, 1984. - 366 с.
  11. Бочков Н. П. Профилактика наследственных болезней//Клин. мед. - 1988. - № 5. - С. 7-15.
  12. Буловская Л. Н., Блинова Н. Н., Симонов Н. И. и др. Фенотипические изменения в ацетилировании у опухолевых больных//Вопр. онкол. - 1978. - Т. 24, № 10. - С. 76-79.
  13. Вельтищев Ю. Е. Современные возможности и некоторые перспективы лечения наследственных болезней у детей//Педиатрия. - 1982. - № П. -С. 8-15.
  14. Вельтищев Ю. E., Каганова С. Ю., Таля В. А. Врожденные и наследственные заболевания легких у детей. - М.: Медицина, 1986. - 250 с.
  15. Генетика и медицина: Итоги XIV Международного генетического конгресса/Под ред. Н. П. Бочкова. - М.: Медицина, 1979.- 190 с.
  16. Гиндилис В. М., Финогенова С. А. Наследуемость характеристик пальцевой и ладонной дерматоглифики человека//Генетика.- 1976. - Т. 12, № 8. - С. 139-159.
  17. Гофман-Кадошников П. Б. Биологические основы медицинской генетики. - М.: Медицина, 1965. - 150 с.
  18. Гринберг К. Н. Фармакогенетика//Журн. Всесоюзн. хим. об-ва. - 1970. - Т. 15, № 6. - С. 675-681.
  19. Давиденков С. Н. Эволюционно-генетические проблемы в невропатологии. - Л., 1947. - 382 с.
  20. Давиденкова Е. Ф., Либерман И. С. Клиническая генетика. - Л.: Медицина, 1975. - 431 с.
  21. Давиденкова Е. Ф., Шварц Е. И., Розеберг О. А. Защита биополимеров искусственными и естественными мембранами в проблеме лечения наследственных заболеваний//Вестн. АМН СССР. - 1978.- № 8. - С. 77-83.
  22. Джавадов Р. Ш. К выявлению фавизма в Азербайджанской ССР// Азерб. мед. журн. - 1966. - № 1. - С. 9-12.
  23. Добровская М. П., Санкина Н. В., Яковлева А. А. Состояние процессов ацетилирования и некоторые показатели липидного обмена при инфекционном неспецифическом артрите у детей//Вопр. охр. мат. - 1967. - Т. 12, № 10. - С. 37-39.
  24. Замотаев И. П. Побочное действие лекарств. - М.: ЦОЛИУВ, 1977. - 28 с.
  25. Заславская Р. М., Золотая Р. Д., Лильин Е. Т. Метод близнецовых исследований "контроля по партнеру" в оценке гемодинамических эффектов нонахлазина//Фармакол. и токсикол. - 1981. - № 3.- С. 357.
  26. Игнатова М. С., Вельтищев Ю. Е. Наследственные и врожденные нефропатии у детей. -Л.: Медицина, 1978. - 255 с.
  27. Идельсон Л. И. Нарушения порфиринового обмена в клинике. - М.: Медицина, 1968. - 183 с.
  28. Кабанов М. М. Реабилитация психически больных. - 2-е изд. - Л.: Медицина, 1985. - 216 с.
  29. Калинин В. Н. Достижения в молекулярной генетике//Достижения современной генетики и перспективы их использования в медицине. - Серия: Медицинская генетика и иммунология. - ВНИИМИ, 1987. - № 2. - С. 38-48.
  30. Канаев И. И. Близнецы. Очерки по вопросам многоплодия. - М.-Л.: Изд. АН СССР, 1959.- 381 с.
  31. Козлова С. И. Медико-генетическое консультирование и профилактика наследственных болезней//Профилактика наследственных болезней (сборник трудов)/Под ред. Н. П. Бочкова. - М.: ВОНЦ, 1987.- С. 17-26.
  32. Кошечкин В. А. Выделение генетических факторов риска ишемической болезни сердца и их использование при диспансеризации//Профилактика наследственных болезней (сборник трудов)/Под ред. Н. П. Бочкова.- М.: ВОНЦ, 1987.- С. 103-113.
  33. Краснопольская К. Д. Достижения в биохимической генетике//Достижения современной генетики и перспективы их использования в медицине. - Серия: Медицинская генетика и иммунология. - ВНИИМИ, 1987. - № 2. - С. 29-38.
  34. Ладодо К. С., Барашнева С. М. Успехи диетотерапии в лечении наследственных заболеваний обмена у детей//Вестн. АМН СССР.- 1978. - № 3. - С. 55-60.
  35. Лильин Е. Т., Мексин В. А., Ванюков М. М. Фармакокинетика сульфалена. Связь между скоростью биотрансформации сульфалена и некоторыми фенотипическими признаками//Хим.-фарм. журн. - 1980. - № 7. - С. 12-16.
  36. Лильин Е. Т., Трубников В. И., Ванюков М. М. Введение в современную фармакогенетику. - М.: Медицина, 1984. - 186 с.
  37. Лильин Е. Т., Островская А. А. Влияние наследственного отягощения на течение и эффективность лечения хронического алкоголиз-ма//Сов. мед. - 1988. - № 4. - С. 20-22.
  38. Медведь Р. И., Луганова И. С. Случай острой гемолитической анемии - фавизма в Ленинградской области//Вопр. гематол. и переливания крови. - 1969. -Т. 14, № 10. - С. 54-57.
  39. Методические рекомендации по организации в Белоруссии медико-генетического обследования детей с хромосомными болезнями. - Минск, 1976. - 21с.
  40. Никитин Ю. П., Лисиченко О. В., Коробкова Е. Н. Клинико-генеалогический метод в медицинской генетике. Новосибирск: Наука, 1983. - 100 с.
  41. Основы цитогенетики человека / Под ред. А. А. Прокофьевой-Бельговской. - М.: Медицина, 1969. - 544 с.
  42. Покровский А. А. Метаболические аспекты фармакологии и токсикологии пищи. - М.: Медицина, 1979. - 183 с.
  43. Спиричев В. Б. Наследственные нарушения обмена и функции витаминов//Педиатрия. - 1975. - № 7. - С. 80-86.
  44. Столин В. В. Самосознание личности. - М.: Изд-во МГУ, 1983. - 284 с.
  45. Таболин В. А., Бадалян Л. О. Наследственные болезни у детей. - М.: Медицина, 1971. - 210 с.
  46. Фармакогенетика. Серия технических докладов ВОЗ, № 524. - Женева, 1975. - 52 с.
  47. Холодов Л. Е., Лильин Е. Т.. Мексин В. А., Ванюков М. М. Фармакогенетика сульфалена. II Популяционно-генетический аспект//Генетика. - 1979. - Т. 15, № 12. - С. 2210-2214.
  48. Шварц Е. И. Итоги науки и техники. Генетика человека/Под ред. Н. П. Бочкова. - М.: ВИНИТИ АН ССР, 1979.-Т. 4.- С. 164-224.
  49. Эфроимсон В. П., Блюмина М. Г. Генетика олигофрений, психозов, эпилепсий. - М.: Медицина, 1978. - 343 с.
  50. Asberg М., Evans D.. Sjogvest F. Genetic control of nortriptiline plasma levels in man: a study of proposit with high plasma concentration//J. med. Genet.- 1971. - Vol. 8. - P. 129-135.
  51. Beadl J., Tatum T. Genetic control of biochemical reactions in neurospora//Proc. Nat. Acad. Sci. - 1941, - Vol. 27. - P. 499-506.
  52. Bourne J., Collier H.. Somers G. Succinylcholine muscle relaxant of short action//Lancet.- 1952. - Vol. 1. - P. 1225-1226.
  53. Conen P., Erkman B. Frequency and occurrence of chromosomal syndromes D-trisomy//Amer. J. hum. Genet. - 1966. - Vol. 18. - P. 374-376.
  54. Cooper D., Schmidtke Y. Diagnosis of genetic disease using recombinant DNA//Hum. genet. - 1987. - Vol. 77. - P. 66-75.
  55. Costa Т., Seriver C.. Clulds B. The effect of mendelian disease on human health: a measurement//Amer. J. med. Genet. - 1985. - Vol. 21. - P. 231-242.
  56. Drayer D., Reidenberg M. Clinical consequences of polymorphic acety-lation of basic drugs//Clin. Pharmacol. Ther.- 1977. - Vol. 22, N. 3. - P. 251-253.
  57. Evans D. An improved and simplified method of detecting the acetylator phenotype//J. med. Genet.- 1969. - Vol. 6, N 4. - P. 405-407.
  58. Falconer D. S. Introduction to quantitative genetics. - London: Oliver and Boyd, 1960. - 210 p.
  59. Ford С. E., Hamarton J. L. The chromosomes of man//Acta genet, et statistic, med. - 1956. - Vol. 6, N 2. - P. 264.
  60. Garrod A. E. Inborn errors of metabolism (Croonian Lectures)//Lancet. - 1908. - Vol. 1, N 72. - P. 142-214.
  61. Jacobs P. A., Baikie A. J. Court Brown W. M. et al. Evidence of existence of human "superfemale"//Lancet. - 1959. - Vol. 2. - P. 423.
  62. Kaousdian S., Fabsetr R. Hereditability of clinical chemistries in an older twin//J. Epidemiol. - 1987. - Vol. 4, N 1, -P. 1 - 11.
  63. Karon М., Imach D., Schwartz A. Affective phototherapy in congenital nonobstructive, nonhemolytic jaundice//New Engl. J. Med. - 1970. - Vol. 282. - P. 377-379.
  64. Lejeune J., Lafourcade J., Berger R. et al. Trios cas de deletion du bras court d’une chromosome 5//C. R. Acad. Sci.- 1963. - Vol. 257.- P. 3098-3102.
  65. Mitchcel J. R., Thorgeirsson U. P., Black М., Timbretl J. Increased incidence of isoniazid hepatitis in rapid acetylators: possible relation to hydranize//Clin. Pharmacol. Ther. - 1975. - Vol. 18, N 1. - P. 70-79.
  66. Mitchell R. S., Relmensnider D., Harsch J., Bell J. New information on the clinical implication of individual variation in the metabolic handing of antituberculosis drug, particularly isoniazid//Transactions of Conference of the Chemotherapy of Tuberculosis. - Washington: Veter. Administ., 1958.- Vol. 17.- P. 77-81.
  67. Moore К. L., Barr M. L. Nuclear morphology, according to sex, in human tissues//Acta anat. - 1954. - Vol. 21. - P. 197-208.
  68. Serre H., Simon L., Claustre J. Les urico-frenateurs dans le traitement de la goutte. A propos de 126 cas//Sem. Hop. (Paris).- 1970.- Vol. 46, N 50. - P. 3295-3301.
  69. Simpson N. E., Kalow W. The "silent" gene for serum cholinesterase//Amer. J. hum. Genet. - 1964. - Vol. 16, N 7. - P. 180-182.
  70. Sunahara S., Urano М., Oqawa M. Genetical and geographic studies on isoniazid inactivation//Science. - 1961. - Vol. 134. - P. 1530- 1531.
  71. Tjio J. H., Leva N. A. The chromosome number of men//Hereditas. - 1956.- Vol. 42, N 1, - P. 6.
  72. Tocachara S. Progressive oral gangrene, probably due to a lack of catalase in the blood (acatalasaemia)//Lancet.- 1952. - Vol. 2.- P. 1101.

ПОПУЛЯЦИОННО-СТАТИСТИЧЕСКИЙ МЕТОД

Метод находит широкое применение в клинической генетике, т.к. внутрисемейный анализ заболеваемости неотделим от изучения наследственной патологии как в станах с большим населением, так и в относительно изолированных популяционных группах. Сущность метода заключается в изучении (с помощью методов вариационной статистики) частот генов и генотипов в различных популяционных группах, что дает необходимую информацию о частоте гетерозиготности и степени полиморфизма у человека. В частности, в гетерозиготном состоянии в популяциях находится значительное количество рецессивных аллелей, что обуславливает развитие различных наследственных заболеваний, частота которых зависит от концентрации рецессивного гена в популяции и значительно повышается при заключении близкородственных браков. Мутации могут передаваться потомству во многих поколениях, что приводит к генетической гетерогенности, лежащей в основе полиморфизма популяций.

Среди людей невозможно найти генетически одинаковых лиц (за исключением монозиготных близнецов, для которых предполагается 100% общих генов), хотя общность генов хорошо прослеживается у близких и дальних родственников.

Сущность метода состоит в выяснении наследственной обусловленности признаков и установления связей между генотипом и внешней средой. Принцип применения метода заключается в сравнении монозиготных и дизиготных близнецов. Среди всех близнецов примерно 1/3 приходится на долю монозиготных и 2/3 - на долю дизиготных близнецов.

При этом вычисляются показатели соответствия (конкордантность) или несоответствия (дискордантность), а также определяется частота возникновения заболевания (признака) одновременно у обоих близнецов каждой пары. Степень конкордантности по наследственно обусловленным признакам будет выше у идентичных близнецов.

Если однояйцовые близнецы (ОБ) даже в разных средах существования обнаруживают более высокую конкордантность, чем двухяйцевые (ДБ) в однотипных средах, то можно предположить, что конкордантность обусловлена генетическими, а не средовыми факторами.

Близнецовый метод имеет несколько основных направлений:

Диагностика зиготности - изучение сходства и различия партнеров близнецовой пары по совокупности ряда признаков, изменяющихся под воздействием окружающей среды. В этом случае используется метод полисистемного сходства или подобия по внешним признакам.

Методы экспериментального изучения:

Иммуногенетический - сравнение по антигенам, белкам сыворотки крови, гаплотипам HLA, т.е. по менделирующим признакам, которые не изменяются в течение всей жизни, несмотря ни на какие воздействия окружающей Среды;



Исследование дерматоглифики;

Изучение наследуемых способностей (например, чувство вкуса фенилтиокарбамида);

Изучение данных ЭКГ и ЭГ;

Трансплантация кожного лоскута.

Статистическое исследование близнецовой выборки - анкетирование близнецов, которое целесообразно в популяционных исследованиях с большими выборками.

Метод контроля по партнеру - используется только у монозиготных близнецов. При этом возможно точно оценить то или иное внешнее воздействие, если ему подвергся только один партнер (например, лекарственный препарат). Такие исследования выгодны в экономическом плане, так как позволяют ограничивать выборку всего двумя-тремя десятками пар близнецов.

В дальнейшем перспективно применение близнецового метода в сочетании с другими (цитогенетические, биохимические и др.).

БИОХИМИЧЕСКИЕ МЕТОДЫ Эти методы помогают обнаружить целый ряд заболеваний с нарушениями обмена веществ (энзимопатии). Исследованию подлежат кровь, моча, ликвор, пунктаты костного мозга, амниотическая жидкость, сперма, пот, волосы, ногти, кал и др.

На первом этапе обследования (экспресс-диагностика) применяются методы массового биохимического скрининга: пробы Феллинга (на фенилкетонурию), Альтгаузена (гликогенозы), Бенедикта (галактоземия, фруктоземия), проба на гипераминоацидурию, микробиологический тест Гатри (ФКУ и др. аминоацидопатии).

Разработаны простые качественные биохимические тесты для эксперсс-диагностики гипотиреоза, муковисцидоза, для выявления нарушений обмена билирубина, болезни Тея-Сакса, гепатолентикулярной дегенерации, АГС. Эти пробы достаточно просты и используют легко доступный биологический материал (кровь, моча).

На втором этапе (уточняющая диагностика) применяют молекулярно-цитогенетические, молекулярно-биологические методы, более сложные методы аналитической биохимии:

Исследование метаболического пути (количественное определение метаболитов, их кинетики и накопления);

Прямое измерение концентрации (иммунохимические методы), активности (энзимо-диагностика), физико-химических и кинетических параметров мутантных белков;

Исследование мутантных белков с помощью нагрузочных проб мечеными субстратами и гибридизации соматических клеток;

Исследование структуры мутантного гена методами рестрикционного анализа. Большие перспективы открываются с применением жидкостной и газовой хроматографии, позволяющей определить аминокислотный состав исследуемого субстрата в течение нескольких минут.

Показания для биохимического исследования:

1) умственная отсталость, психические нарушения;

2) нарушение физического развития - аномальный рост и строение волос или ногтей; неправильный рост с искривлением костей туловища и конечностей, чрезмерное отло-жение жира, гипотрофия или кахексия, тугоподвижность или разболтанность суставов;

3) плохое зрение или полная слепота, тугоухость или глухота;

4) судороги, мышечная гипотония, гипер- и гипопигментация, фото-чувствительность, желтуха;

5) непереносимость отдельных пищевых продуктов и лекарственных препаратов, нарушение пищеварения, частая рвота, диарея, жидкий стул, гепато- и спленомегалия;

6) почечно-каменная болезнь, холестаз;

7) гемолитические анемии и др. состояния.

Появление близнецового метода в генетике

Определение 1

Близнецовый метод представляет собой научный метод, основанный на принципах сопоставления индивидуальных признаков близнецов, и имеющий целью выявление степени влияния среды и генетики на процесс формирования личности.

Основателем метода является Ф. Гальтон, который в своей статье в $1875$ году рассматривал близнецов как инструмент исследования для того, чтобы найти индивидуальные отличия в плане воздействия биологических факторов и факторов окружающей среды на формирование личности. Однако мнения о данном методе исследования были высказаны и ранее, но именно Ф. Гальтон сформулировал теорию: «природа» или «воспитание», изложив главные тезисы проблемы в книге «Близнецы, как критерий силы наследственности и среды».

Суть близнецового метода

В качестве главных особенностей близнецового метода можно выделить два момента: первый - подбор испытуемых осуществляется таким образом, чтобы сравнить их генетический материал, при этом должно быть точное совпадение; второй – выявление того свойства, который подлежит изучению. Первый момент довольно сложен в разрешении и обусловлено это тем, что различают два типа близнецов: монозиготные и дизиготные. При этом монозиготные близнецы имеют единый общий генетический материал, а дизиготные характеризуются разным генетическим набором. Кроме того, частота первых наблюдается в природе реже.

Среди основных проблем близнецового метода на сегодняшний день исследователи выделяют подбор испытуемых по фенотипическим показателям.

Замечание 1

В связи с тем, что близнецовый метод стал применяться в научной области все чаще, необходимо знание особенностей его проведения. Первая особенность заключается в том, что необходим учет двух факторов: среды развития и отсутствия различий между близнецами. Пренебрежение первым фактором повлечет за собой нарушение внутренней валидности исследования. В качестве примера можно привести отношение родителей к близнецам, которое приведет к формулировке ложных выводов о влиянии среды на изучаемый признак. А пренебрежение уровнем сходства между близнецами отразится на внешней валидности исследования, что связано с тем, что отсутствие этого фактора повлияет на получение информации о генетической составной влияния на формирование исследуемого признака.

На сегодняшний день генетики довольно часто применяют не только классический близнецовый метод, но и его всевозможные модификации. Среди них можно выделить:

  • Метод контрольного близнеца, когда пары разделяются, где первый определяется в экспериментальную группу, а второй – в контрольную. Затем по итогам исследования, установляются достоверные отличия во влиянии на экспериментальную выборку при сравнении с показателями в контрольной.
  • Метод разлученных близнецов, когда близнецов разлучают в раннем детстве, и они даже не предполагают о существовании друг друга.
  • Метод близнецовых семей, который применяется для изучения влияния наследственности на развитие психических заболеваний.

Ошибки в применении близнецового метода

Суть первой ошибки заключается в том, что среда воспитания моно- и дизиготных близнецов существенно отличается в силу внешних отличий таких детей. В связи с тем, что монозиготные близнецы выглядят одинаково, родители к ним относятся также одинаково. Различия во внешности дизиготных близнецов провоцирует и разное к ним отношение со стороны близких людей. В качестве второй возможной ошибки выступает уровень генетического сходства, который следует четко определить в начале исследования.

Ограничения в использовании близнецового метода

Несмотря на свое широкое применение, близнецовый метод имеет определенные ограничения в своем использовании. В качестве данных ограничений можно выделить такие как систематические различия между близнецами и не близнецами по ряду признаков, например, масса, частота врожденных аномалий; психологические и социальные особенности развития близнецов в постнатальный период.

Методы психогенетики как науки, которая находится на стыке генетики и психологии, включают в себя психологические (тестирование, анкетирование и др.), генетические (популяционный, цитологический), психогенетические (метод приёмных детей, генеалогический, близнецовый) и математический (дисперсионный, корреляционный анализ) методы. Рассмотрим психогенетические методы более детально.

Близнецовый метод

Цель метода - оценить соотносительную роль наследственности и среды в развитии разнообразных признаков, в том числе болезней человека. Различают близнецов однояйцевых, или монозиготных, происходящих из одной оплодотворённой яйцеклетки (зиготы), и двуяйцевых, или дизиготных, которые возникают при одновременном оплодотворении двух яйцеклеток двумя сперматозоидами. Монозиготные близнецы имеют идентичные генотипы, полученные в результате слияния одной яйцеклетки с одним сперматозоидом. Их появление связано с расхождением дочерних клеток при первом (двое близнецов) или последующем делении зиготы (трое, четверо близнецов), т.е. они представляют собой результат одного из вариантов клонирования. Такие близнецы всегда одного пола. У них сходные черты строения тела и характеров, одинаковая группа крови, идентичные отпечатки пальцев, и их ткани не отторгаются при взаимных пересадках. Соотношение моно-и дизиготных близнецовых пар примерно равно 1: 2.

Для диагностики зиготности используются:

  • анализ внешнего и дерматоглифического сходства;
  • анализ тождества по эритроцитным антигенам (системы группы крови ABO, Rh, MN и др.);
  • пересадка кожи - у монозиготных отсутствует отторжение;
  • методы ДНК-диагностики.

Рождение близнецов - явление редкое. Частота появления близнецов составляет примерно 3% от общего числа родов (табл. 4.1).

Таблица 4.1. Численность ДЗ- и МЗ-близнецов в разных странах мира

При этом количество двоен увеличилось за последние пять лет, что обусловлено применением фармпрепаратов для повышения вероятности забеременеть для женщин, страдающих бесплодием: многие репродуктивные технологии также приводят к повышению риска многоплодной беременности. Показано, что высокорослые длинноногие женщины также имеют более высокий риск иметь многоплодную беременность по сравнению с женщинами с нормальным ростом. Впервые близнецовый метод был предложен Ф. Гальтоном в 1865 году.

Коэффициент конкордантности (С) - показатель идентичности пары близнецов по определённому признаку; соответствует доле сходных (конкордатных) по изучаемому признаку пар среди обследованных пар близнецов для каждой группы. Существуют таблицы коэффициента для разных признаков и заболеваний (табл. 4.2).

Таблица 4.2. Примеры конкордантности по некоторым признакам и заболеваниям у монозиготных (МЗ) и дизиготных (ДЗ) близнецов, %

Близнецовый метод имеет несколько разновидностей. В литературе чаще встречаются такие из них:

  • 1) Классический близнецовый метод. В этом случае используется такая схема эксперимента, при которой выраженность исследуемого признака сопоставляют в парах монозиготных и дизиготных близнецов и оценивается уровень внутрипарного сходства партнёров.
  • 2) Метод контрольного близнеца. Этот метод используется на выборках монозиготных близнецов. Так как монозиготные близнецы весьма сходны по многим признакам, то из партнёров монозиготных пар можно составить две выборки, уравненные по большому числу параметров. Такие выборки используются для исследования влияния конкретных средовых воздействий на изменчивость признака. При этом отобранная часть близнецов (по одному из каждой пары) подвергается специфическому воздействию, другая же часть является контрольной группой. Поскольку в эксперименте участвуют генетически идентичные люди, то такой способ можно считать моделью для изучения воздействия различных средовых факторов на одного и того же человека.
  • 3) Лонгитюдное близнецовое исследование. В этом случае проводится длительное наблюдение одних и тех же близнецовых пар. Фактически это сочетание классического близнецового метода с лонгитюдным. Широко используется для изучения влияния средовых и генетических факторов в развитии организма (рис. 4.1).

Рисунок 4.1.

  • 4) Метод близнецовых семей является сочетанием семейного и близнецового метода. При этом исследуются члены семей взрослых близнецовых пар. Дети монозиготных близнецов по генетической конституции являются как бы детьми одного человека. Метод широко используется при изучении наследственных причин ряда заболеваний.
  • 5) Исследование близнецов как пары предполагает изучение специфических близнецовых эффектов и особенностей внутрипарных отношений. Используется как вспомогательный метод для проверки справедливости гипотезы о равенстве средовых условий для партнёров моно- и дизиготных пар.
  • 6) Метод разлучённых близнецов. Из-за особенностей развития монозиготных и дизиготных пар близнецов классический близнецовый метод и его разновидности принято считать "нежёсткими" экспериментами: в них невозможно однозначно разделить влияние генетических и средовых факторов, так как в силу ряда причин условия развития близнецов по целому ряду особенностей оказываются несопоставимыми (рис. 4.2).

Рисунок 4.2. Разлучённые в детстве монозиготные близнецы

Однако у близнецового метода есть серьёзные недостатки, что ставит под сомнение результаты, ранее полученные с помощью этого метода. Если положение о равенстве средовых условий развития монозиготных и дизиготных близнецов не соблюдается, то оценки компонентов фенотипической дисперсии искажаются. Подобные искажения могут иметь в своей основе следующие причины:

  • 1) средовые условия могут увеличивать внутрипарное сходство монозиготных близнецов. Подчёркивание сходства близнецов окружающими может привести к появлению дополнительного (негенетического) сходства между членами пары монозиготных близнецов. Это противоречит принятому допущению о равенстве общих сред для монозиготных и дизиготных пар близнецов, так как для пар дизиготных близнецов подобное подчёркивание сходства менее характерно. В случае изучения признака, слабо зависящего от специфических особенностей среды (например, психофизиологических характеристик), погрешность будет невелика. Но если признак чувствителен к такого рода особенностям близнецовой среды, то близнецовый метод малопригоден для его изучения, т.к. нарушается принцип равенства сред и общая среда будет вносить больший вклад в сходство монозиготных близнецов, чем в сходство дизиготных близнецов;
  • 2) условия развития могут равным образом уменьшать сходство партнёров как монозиготных, так и дизиготных пар близнецов. Часть их связана с периодом внутриутробного развития и родов, часть приходится на последующие этапы развития. Во время внутриутробного развития близнецы часто оказываются в неравных условиях. Так, все питательные вещества и кислород поступают в плод через плаценту. Все дизиготные близнецы и одна треть монозиготных близнецов имеют различные хорионы и плаценты, остальные две трети монозиготных близнецов имеют общие хорионы и плаценту. В этом случае в плодных оболочках так называемых монохорионных близнецов образуются различные соединения (шунты) между сосудистыми системами близнецов. В случае формирования артериовенозного шунта происходит соединение артерий одного близнеца с веной другого. При этом одному из близнецов может недоставать богатой кислородом и питательными веществами крови, возможный же избыток того и другого у второго близнеца также может не способствовать нормальному развитию.

К счастью, обычно возникает несколько примерно равных по мощности шунтов, компенсирующих друг друга. Если же компенсация недостаточна, то один из близнецов развивается в условиях дефицита кислорода и питательных веществ. В этом же случае при рождении наблюдается значительная разница между близнецами, в первую очередь в весе. Подобная разница может наблюдаться и у дизиготных близнецов, и у дихорионных монозиготных близнецов из-за неравного сдавливания плацент при многоплодной беременности.

Этап родов может обусловить сильные средовые различия для близнецов. Близнец, рождающийся первым, имеет больший шанс получить родовую травму. В то же время второй близнец чаще всего занимает в матке неправильное положение, что приводит к необходимости искусственного родовспоможения. Кроме того, второй близнец дольше находится в родах и, соответственно, дольше и острее испытывает кислородное голодание, что отрицательно сказывается на развитии нервной системы.

Средовые различия между близнецами возникают и на последующих этапах развития даже при воспитании в одной семье. К этому чаще всего приводит предвзятое отношение родителей к каждому из близнецов, при этом физические особенности, возникшие на этапе внутриутробного развития и родов, усугубляются. Также часто происходит разделение обязанностей между близнецами, разделение пар по принципу "лидер - ведомый".