Эфир тесла получение энергии схема. Трансформатор Тесла на качере Бровина своими руками и съем энергии. Радиантная энергия. Беспроводная передача энергии

Эфира способен сжиматься, деформироваться и проникать сквозь малые отверстия в металле (рис. 11).

Рис. 11. Механизм проникновения шаровой молнии сквозь малое отверстие в металле

Таким образом, эфиродинамическая модель шаровой молнии, в принципе, соответствует всем ее свойствам, известным в настоящее время.

Наиболее близкой моделью шаровой молнии из всех ныне существующих является модель, предполагающая, что шаровая молния – это поток магнитного поля, замкнутый сам на себя. Эта модель, правда, не объясняет, как такое поле способно удержаться в замкнутом объеме, поскольку таких понятий, как пограничный слой, вязкость, сжимаемость или температура у магнитного поля нет. Она не может объяснить и факта прилипания молнии к металлическим предметам. Но все же эта модель ближе всех подошла к сущности шаровой молнии. Сегодня для объяснения устойчивости этой модели привлекаются такие понятия, как устойчивость плазмы, самофокусировка и даже подпитка тела молнии внешним источником, находящимся далеко за пределами самой молнии.

Все эти искусственные построения для эфиродинамической модели не нужны.

Как можно создать шаровую молнию в лабораторных условиях? Сейчас об этом трудно говорить, потому что шаровая молния возникает в самый неподходящий момент в самых обычных, казалось бы, условиях. Она может выскочить из обычной розетки, из магнитного пускателя, во время или после грозы, а то и просто где угодно. Но замечено, что наиболее частые случаи появления шаровой молнии связаны с искровыми промежутками, разрядниками или просто плохими контактами

Можно попытаться создать замкнутое магнитное поле, существующее независимо в пространстве. Для этого можно использовать быстродействующий электрический ключ, например, разрядник, способный быстро пропустить большой ток и запереть эдс самоиндукции. Первое нужно для того, чтобы в пространстве образовался большой градиент магнитного поля, в котором образуется градиент скорости потока эфира и тем самым условия для создания пограничного слоя будущего эфирного тороида. Второе нужно для того, чтобы оперативно отсечь магнитное поле от проводника, куда оно попытается спрятаться после прекращения тока.

Если разрядник оборвет ток в короткое время, то на нем возникнет эдс самоиндукции, равная

Е = – L д i /д t (6)

Если пропускаемый ток составит величину в 1 Ампер, время обрыва цепи составит 1 микросекунду, а индуктивность линии (1 метр провода) составит 1 микроГенри, то эдс самоиндукции окажется равной 1 Вольт. Но этого, вероятно, недостаточно для создания шаровой молнии, поскольку за время, равное 1 микросекунде, магнитное поле успеет спрятаться в проводник. Значит, нужны более короткие промежутки, например, в 1 наносекунду. Тогда поле, возвращающееся в проводник со скоростью света, успеет пройти всего лишь 30 см, а все остальное магнитное поле окажется снаружи. Оно сколлапсирует, и будет создан эфирный или магнитный тороид. Но здесь уже разрядник должен уметь противостоять эдс самоиндукции в 1000 Вольт. При этом энергия образованного тороида будет невелика, порядка миллионных долей Джоуля.

Для повышения энергетики образованного магнитного тороида нужно увеличивать значение обрываемого тока. Но при токе в 1000 Ампер нужно будет противостоять значению эдс уже в 1 миллион Вольт. Начальная энергия будущей шаровой молнии составит в этом случае единицы Джоулей. Если же для создания поля использовать воздушную индуктивность хотя бы в несколько сотых долей Генри, то начальное энергосодержание молнии составит уже сотни и тысячи Джоулей, но и противоэдс здесь составит уже многие миллионы Вольт. Однако все это, не считая последующего сжатия тела молнии эфиром, при котором энергосодержание молнии будет повышаться по мере сжатия тела молнии давлением эфира пропорционально квадрату уменьшения ее радиуса. А уж после того, как шаровая молния будет создана, можно будет подумать и о том, как использовать ее энергию. Это можно сделать, например, загнав молнию в бочку с водой…

Таким образом, принципиальный путь как для создания искусственной шаровой молнии, так и для добывания энергии из вакуума все же есть, но беда в том, что разрядников с указанными выше характеристиками пока не существует.

Однако в природе шаровая молния появляется в самых обычных условиях и в самое неподходящее время. Видимо, что-то существует помимо того, что было высказано выше, какие-то дополнительные условия, способствующие формированию шаровой молнии без разрядников с упомянутыми выше параметрами, что-то более простое.

Исходя из изложенного, можно все-таки ожидать, что с помощью высокочастотных разрядников и каких-либо других приспособлений появятся устройства, позволяющие использовать энергетику эфира. И, похоже, что первые подобные устройства начали появляться.

4. Трансформатор Теслы

4.1. Как оценить энергию магнитного поля?

Из всех видов силовых полей наиболее удобными для практического использования являются магнитные поля, создаваемые токами, текущими в проводниках. Они энергоемки, безопасны, легко создаваемы, способны обеспечить силовые взаимодействия между различными объектами, и именно это обстоятельство позволило применить их во всевозможных энергетических установках, в том числе в генераторах и двигателях самых разнообразных конструкций.

Как известно, энергия, содержащаяся в магнитном поле, определяется выражением

μ оH 2

w = ò -- dV , Вт, (7)

где μ о = 4π.10–7, Гн/м – магнитная проницаемость вакуума, H , А/м – напряженность магнитного поля, V , м3 – объем пространства, заполненного магнитным полем.

Распределение напряженности магнитного поля вокруг проводника с током определяется Законом полного тока

ò Hdl = i , (8)

где l , м – отрезок длины силовой линии магнитного поля вокруг проводника с током; i , А – величина тока, текущего по проводнику.

Из Закона полного тока следует, что величина напряженности магнитного поля на расстоянии R от проводника составляет

Н = -- , (9)

а отношение напряженностей магнитного поля на разных расстояниях должно подчиняться гиперболическому закону, т. е.

Н 1 R 2

Н 2 R 1

и в относительных координатах может быть изображено как гипербола (рис. 10, кривая 1).

Однако прямые измерения показали, что это не совсем так. Уже при токе в 0,1 А отношение напряженностей существенно отличается от указанного распределения, причем с увеличением абсолютной величины тока отклонение увеличивается все больше. Налицо явное отклонение реального распределения напряженности магнитного поля от гиперболического закона, при этом отклонение от этого закона в относительных координатах увеличивается с увеличением абсолютного значения тока в проводнике (рис. 12, кривые 2 и 3) .


Рис. 12. Распределение напряженности магнитного поля вокруг проводника с током

Полученное экспериментально отклонение может быть легко объяснено, если учесть сжимаемость эфира и, как следствие, сжимаемость всех структур, включая и магнитное поле. Закон полного тока оказывается справедливым лишь для предельно малых напряженностей магнитного поля, при которых сжимаемостью можно пренебречь. Но он не полностью верен для больших токов, даже величиной в 0,1 А. Это значит, что реально магнитное поле в единице объема несет в себе энергии больше, чем это следует из Закона полного тока и существующих методов расчетов.

Из изложенного вытекает, что контур с высокодобротными катушками, настроенный в резонанс, должен накапливать в себе энергии существенно больше, чем это следует из существующих расчетов, ибо энергия определяется не только скоростью винтовых потоков эфира, представляющих собой магнитное поле, но и их массовой плотностью. Возможно, это обстоятельство было учтено Николой Теслой при построении своих высокочастотных силовых трансформаторов, в которых обязательно использовался резонанс и в которых получались в результате высокие напряжения, исчисляемые миллионами Вольт, что никак не следовало из обычных расчетов.

Но это же обстоятельство позволяет по-иному подойти и к энергетике шаровых молний, которые можно рассматривать как замкнутое само на себя уплотненное магнитное поле с той лишь особенностью, что существующие теории магнитного поля никак не предусматривают наличие у таких образований градиентного пограничного слоя. Для этого нужно обратиться к эфиродинамическим представлениям о физической сущности силовых полей взаимодействий.

4.2. Быстродействующие ключи и эфирная энергетика

В том, что разряд в вакууме обладает большой энергией, несложно убедиться, зарядив высоковольтный конденсатор до напряжения в несколько тысяч вольт, а затем разрядив его на два независимые друг от друга электроды старой радиотехнической лампы стеклянной серии. Повышая постепенно напряжение и емкость конденсатора со 100 пФ и далее, и подключая его к электродам лампы можно убедиться, что, начиная с некоторого значения, электроды внутри лампы начнут взрываться, так что от них остается труха. Колба лампы при этом остается целой. Из этого следует, что вакуумный разряд имеет высокую энергетику.

Профессор Экономического университета им. Чернетский в 70-е – 80-е годы провел серию экспериментов с вакуумным разрядником. Одно из устройств было собрано по схеме, приведенной на рис. 13.

В схеме имелся источник постоянного тока и цепь, состоящая из конденсатора емкостью 1 мкФ, настраиваемого разрядника и двух одинаковых лампочек мощностью по 60 Вт. Одна лампа включалась до конденсатора, вторая – после разрядника.

Напряжение подбиралось таким, чтобы при замыкании разрядника обе лампы слегка светились. При размыкании разрядника обе лампы, естественно не горели. Затем, сближая электроды разрядника нужно было установить устойчивый разряд (обычно, это соответствовало расстоянию между электродами в несколько десятых долей миллиметра) и затем, настраивая разрядник, т. е. регулируя расстояние между электродами с помощью микрометрического винта, меняли накал ламп. При этом первая лампа могла погаснуть совсем, а вторая доводилась до высокого накала, при котором могла и перегореть.

Gif" width="34">.gif" width="34">.gif" height="50">.gif" width="18" height="18">.gif" width="186">.gif" width="59" height="12">.gif" width="42">.gif" height="18">.gif" height="58">С

~ БП Л

Рис. 13. Чернетского: БП – блок питания , Р – разрядник, С – конденсатор, Л – дампы накаливания.

Создавалось странное впечатление. Обе лампы включены последовательно в цепь, питаемую постоянным током, но одна лампа гасла, а вторая ярко светилась, что явно говорило о подпитке ее дополнительной энергией. На самом деле это вовсе не обязательно. Здесь значительную роль играл так называемый коэффициент формы.

У в свое время возникли значительные трудности с определением величины выделяемой мощности. Эту трудность легко преодолеть, если использовать еще две таких же лампы, питаемые каждая от отдельного источника постоянного тока, в цепи которого измерение потребляемой мощности не представляет труда. Доведя с помощью пирометра накал каждой лампы до накала ламп в основной цепи, можно с высокой точностью определить выделяемую ими мощность и сопоставить ее с мощностью, потребляемой основной цепью.

К сожалению, подобные попытки других исследователей не подтвердили ожидаемого результата. Однако было высказано предположение, что этими исследователями не было доведено значение тока до некоторого критического значения, при котором эффект начнет проявляться. Поэтому эксперименты в подобном направлении целесообразно продолжить.

Необходимо довести до сведения читателя, что профессор погиб от рака кожи на лице, предположительно облучившись в процессе проведения экспериментов от пульсирующего магнитного поля или поля другой природы, окружающего разрядник. Это значит, что при проведении подобных экспериментов необходимо соблюдать осторожность, не приближаясь близко к разряднику.

Американским ученым Кеннетом Р. Шоулдерсом предложен прибор с использованием быстродействующего электрического ключа (вакуумного разрядника) для получения энергии из окружающей среды, в котором получено от30 до 50 кратное увеличение энергии правда, пока в малых количествах. Предположительно, здесь реализуется тот самый механизм образования магнитного поля и его сжатие, который описан выше. Высокий кпд устройства подтверждает целесообразность продолжения работ в подобном направлении.

Таким образом, применение быстродействующих ключей для получения энергии из эфира может оказаться весьма перспективным.

4.3. Двойная спираль Теслы

В некоторых своих устройствах Тесла использовал две расположенные в общей плоскости плоские спирали, включенные последовательно (рис. 14). Зачем?

На рис. 15 изображено направление распространения магнитного поля по внешним виткам спиралей и по их центрам, из чего следует, что созданное поле должно замкнуться в тороидальный вихрь. Таким образом, применение двойных плоских спиралей как элемента электрических цепей приобретает конкретный смысл. Однако следует сделать несколько дополнений.

Рис. 15. Образование магнитного тороида вокруг плоских спиралей

Во-первых, замыкание магнитного тороида и его последующее сжатие произойдет в том случае, если ток в цепи будет импульсным и передний и задний фронты будут достаточно короткими. Это особенно касается заднего фронта, от крутизны которого прямо зависит, будет сформирован пограничный слой на поверхности тороида или не будет. Во-вторых, возможно, что определенную роль играет расположение разрядника относительно спиралей: у Тесла разрядник располагался в промежутке между спиралями, чем гарантировалась одновременность создания магнитных полей у обеих спиралей.

Поскольку в настоящее время практически никакой четкой методологии, позволяющей произвести расчет параметров спиралей и разрядников не существует, то подбор параметров придется на первых порах производить опытным путем.

4.4. Трансформатор Теслы


Схема устройства трансформатора Теслы приведена на рис. 16.

Рис. 16. Схема включения трансформатора Теслы: БП – блок питания; Р – разрядник, С1 – разрядный конденсатор; Тр – трансформатор Теслы, С2 – резонансный конденсатор.

Трансформатор Тесла представляет собой устройство, состоящее из бессердечникового трансформатора, разрядника и электрического конденсатора. Первичная обмотка трансформатора выполнена в виде нескольких витков толстой медной проволоки, а вторичная, помещенная внутри или рядом с первичной обмоткой состоит из большого числа витков изолрованной тонкой медной проволоки.

Первичную обмотку через разрядник и конденсатор подключают к источнику переменного тока, во вторичной обмотке, в которой выполняются условия резонанса.

Принцип действия схемы с трансформатором Теслы заключается в следующем.

Напряжение источника переменного тока выбирается достаточным для пробоя разрядника. В результате пробоя разрядника в первичной обмотке возбуждается прерывистый ток, возникает прерывистое магнитное поле, индуцирующее во вторичной обмотке высокочастотные колебания частотой порядка 150 кГц. Благодаря резонансу, напряжение на вторичной обмотке повышается до 7 млн. Вольт.

Трансформатор Тесла использовался в период 1896 – 1904 г. при создании мощных радиостанций (например, в 1899 г. под руководством Тесла была сооружена радиостанция на 200 кВт в штате Колорадо). Применялся до середины 20-го столетия в тех же целях.

На протяжнии многих лет многие пытались объяснить принцип действия трансформатора Тесла, исходя из традиционных представлений, в частности, появлением эдс самоиндукции на крутых фронтах обрыва тока разрядником в первичной обмотке, но объяснение не найдено до сих пор и, прежде всего, потому, что все пытались объяснить действие трансформатора Теслы на традиционной основе.

С позиций же эфиродинамики некоторые моменты работы трансформатора Теслы начинают проясняться.

Несомненно, появление эдс самоиндукции в трансформаторе Тесла имеет место при обрыве тока в первичной обмотке. Однако, предположительно, в трансформаторе Тесла используется несколько эффектов, главным из которых является поступление дополнительной энергии из эфира за счет сжатия магнитного поля давлением эфира. Применение же резонанса позволяет накапливать большие токи и использовать описанные выше нелинейные эффекты, усиливающие эффективность явления. Вероятно, применение вакуумных разрядников вместо воздушных может способствовать снижению электромагнитных помех. Исследования работы схем с трансформатором Тесла может иметь принципиальное значение для будущей энергетики.

Один из макетов трансформатора Теслы и излучение, исходящее их верхней части вторичной (внутренней) обмотки показаны на рис. 17

https://pandia.ru/text/78/361/images/image039.jpg" width="124" height="212 src=">

Рис. 17. Трансформатор Тесла: а) общий вид лабораторного образца; б) вид разряда на выходе вторичной (внутренней) обмотки трансформатора

В приведенном на фотографии трансформаторе ставилась задача получения максимально высокого напряжения, проблема получения дополнительной энергии не ставилась. О том, что высокое напряжение было получено, свидетельствует корона электрического разряда, хорошо видная на фотографии. Однако с помощью подобного же трансформатора можно попытаться получить дополнительную энергию из эфира.

Существует несколько особенностей формирования импульсов в первичной цепи трансформатора Теслы

Если в катушке индуктивности L , Гн течет ток i , A, то энергия w L, запасенная в магнитном поле, составит величину

w L = L --, Дж (11)

Обращает на себя внимание тот факт, что в отличие от конденсатора С, Ф, заряженного напряжением U, В, в котором запасенная энергия wC, Дж составляет величину

w С = С --, Дж, (12)

и эта энергия сохраняется и может храниться сколь угодно долго, если нет потерь, то в катушке индуктивности энергия исчезает, как только прекращает течь ток, и запасенная в магнитном поле энергия возвращается в цепь, создавшую магнитное поле. Но если эта энергия возвращается не в цепь, создавшую магнитное поле, а в другую цепь, в которой энергия может накапливаться, например, в конденсаторе, то общее количество энергии составит величину, пропорциональную количеству импульсов N , т. е.

w L = N L --, Дж (13)

Здесь предполагается, что значение тока устанавливается в каждом импульсе за исчезающе малое время. Под исчезающе малым временем установления тока в импульсе может предполагаться длительность фронта импульса, несоизмеримо малая по сравнению с длительностью самого импульса, т. е. примерно в десять раз меньшая. Тогда накопленная в конденсаторе, включенном во вторую цепь, энергия будет неограниченно расти со временем.

Мгновенная мощность каждого импульса имеющего длительность Т, составит:

р L = --, Вт, (14)

и, если форма импульса соответствует меандру, то есть длительность импульса и длительность паузы равны, то общая мощность составит:

P L = ---, Вт, (15)

Если радиусы первичной обмотки r1 и вторичной r2 не равны, то

r 12FL i 2

P L = -----, Вт. (16)

Здесь следует учесть, что отношение радиусов не должно быть большим, поскольку зависимость здесь нелинейная, и ее еще предстоит установить.

Постоянная времени цепи ключ – первичная обмотка трансформатора составляет

Т LR = L / R , (17)

где L – индуктивность первичной обмотки, Гн, R – сопротивление ключа в открытом состоянии.

Если длительность импульса равна постоянной времени цепи ключ-первичная обмотка трансформатора, то за время длительности импульса ток в цепи вырастет до значения 0,632 полного тока при питании цепи постоянным током. Тогда общая предельная мощность, которую можно получить, составит:

0,6322 R r 12 i 2 r 1 2

P L = ------- = 0,1 R i 2 --, Вт. (18)

4 r 2 2 r 2 2

При отношении радиусов r 1/ r 2 = 2 получим значение предельной мощности

P L = 0,4 R i 2, Вт. (19)

При отношении радиусов r1 / r2 = 3 получим:

P L = 0,9 R i 2, Вт. (20)

При напряжении питания U = 100 В и сопротивлении открытого ключа в 100 Ом величина тока составит 1 А и предельная получаемая мощность в первом случае составит 40 Вт, во втором – 90 Вт. Если же будут применены ключи, способные пропускать 10 А., то в первом случае предельная мощность составит 4 кВт, во втором 9 кВт. Мощность же затрачиваемая на поддержание процесса в обоих случаях составит 0,1 R i 2, т. е. при токе в 1А 10 Вт, при токе в 10 А – 1 кВт. Эта мощность выделяется на ключе, что требует принятия серьезных мер для его охлаждения.

При значении индуктивности первичной обмотки в 100 мкГн постоянная времени цепи составит 10–4/100 = 10–6 с, следовательно, частота переключений составит 500 кГц, а с учетом необходимой крутизны фронтов частотная характеристика ключа должна быть не хуже, чем 5мГц.

Если индуктивность первичной обмотки составляет 100 мкГн = 10–4 Гн, а частота повторения импульсов составляет 1 мГц = 106 Гц, то при токе в импульсе, равном 1 А, мощность магнитного поля составит 100 Вт. При больших частотах она будет соответственно большей, если за время длительности импульса ток в первичной обмотке успеет установиться до полного значения. При этом длительность, как переднего, так и заднего фронтов должна каждого составлять не более 0,1 от длительности самого импульса.

Из изложенного вытекает, что для повышения выходной мощности следует найти оптимальное отношение диаметров первичной и вторичной обмоток, а также стремиться к повышению частоты переключения тока ключем, что возможно лишь при повышении его сопротивления, а значит, повышения питающего напряжения и соответственно выделяемой на ключе мощности.

Проведенные измерения показали, что с увеличением сечения провода удельная индуктивность провода уменьшается. При увеличении сечения провода его индуктивность снижается по логрифмическому закону:

Сечение провода, мм2 Удельная индуктивность, мкГн/м

При расчете индуктивности соленоидов, как правило, не учитывается сечение самих проводов, это неправильно. Тем не менее, одним из путей сокращения значений индуктивности для получения коротких фронтов является увеличение сечения провода катушки.

Существует и второй способ – увеличение активного сопротивления цепи для уменьшения постоянной времени цепи, но такой способ не выгоден, т. к. потребует увеличения мощности импульса. Кроме того, на высоких частотах должен сыграть свою роль скин-эффект, в соответствии с которым в первичной катушке индуктивности будет использовано не все сечение провода, а только поверхностный слой, который приведет к возрастанию активного сопротивления цепи.

Таким образом, увеличение сечения провода первичной обмотки является наилучшим способом для сокращения длительности фронтов импульсов, что и сделано в трансформаторе Теслы: первичная обмотка выполнена из толстого провода, имеющего сечение десятки и сотни квадратных миллиметров.

При напряжении питания ключа U = 1000 В, R = 100 Ом и токе в 10 А выделяемая на ключе мощность составит 10 кВт, а выдаваемая мощность с учетом потери на возвратную мощность составит в первом случае 30 кВт, во втором – 80 кВт.

Тесла в своих трансформаторах применял частоты порядка 200 кГц, можно предполагать, что такая частота является оптимальной, по крайней мере, для начальной стадии работ.

Расчет зарядной емкости, шунтирующей цепь питания электронной схемы произведем, исходя из соотношения для электрического заряда

Q = CU = iT, (21)

С = -- (22)

Если вся электронная схема питается от напряжения 100 В, то при токе i = 1 А и длительности импульса Т = 10–6 с (F = 0,5 мГц), получим:

С = 0,01 мкФ.

Однако здесь предполагается полный разряд емкости, что нецелесообразно. Для того, чтобы емкость удерживала напряжение питания в пределах изменений не более 10%, нужно увеличить ее в 10 раз, следовательно, для приведенного примера достаточно иметь значение шунтирующей емкости 0,1 мкФ при рабочем напряжении в 1000 В. и частотных характеристиках до 1-2мГц.

При рабочем напряжении в 1000 В и токе импульса в10 А потребуется конденсатор емкостью той же 1 мкФ при рабочем напряжении в 1000 В и тех же частотных характеристиках.

Таким образом, вырисовывается следующий принцип работы устройства для получения энергии из эфира.

В первичную обмотку трансформатора с возможно более высокой частотой повторения поступают импульсы тока с короткими фронтами. С вторичной обмотки, имеющей большее число витков, чем первичная, снимаются импульсы и через выпрямительный диод поступают на конденсатор, шунтирующий цепь питания генератора импульсов, чем осуществляется положительная обратная связь, призванная поддерживать весь процесс. Начальный запуск всей схемы осуществляется от стартера – отдельного источника питания генератора импульсов (сеть, батарея, аккумулятор), который после вхождения устройства в режим, отключается.

Энергия для внешнего потребителя снимается с третьей обмотки, помещаемой аналогично вторичной обмотке внутрь первичной обмотки. К этой третьей обмотке также подключается выпрямительный диод, а затем сглаживающий конденсатор. Полученное постоянное напряжение может использоваться либо непосредственно, либо через соответствующие преобразователи, преобразующие постоянный ток в вид энергии, необходимый потребителю.

4.5. Особенности положительной обратной связи и регулирование энергетических потоков

Самоподдерживание процесса извлечения энергии из окружающей среды при любой схеме возможно лишь в том случае, если часть полученной энергии направляется на вход устройства, это значит, что система должна быть охвачена положительной обратной связью и коэффициент усиления замкнутой цепи должен быть равен единице (рис. 18).


Рис. 18. Энергетическая установка, охваченная положительной обратной связью: а ) структура; б ) затухающий переходной процесс; в ) расходящийся переходной процесс

Если на вход системы возвращается энергии меньше, чем нужно для поддержания рабочего процесса, процесс неизбежно затухнет. Затухание процесса даже носящего колебательный характер, обычно происходит по экспоненциальному закону, причем показатель экспоненты имеет отрицательный знак.

Если же коэффициент усиления замкнутой цепи больше единицы, то система начинает накапливать энергию, процесс развивается по экспоненциальному закону, но показатель экспоненты имеет положительный знак, и система идет в разнос.

В этом случае в системе находится какое-либо слабейшее звено, которое выходит из строя и прерывает процесс. Одним из вариантов такого события является взрыв.

Обеспечить точное равенство единице коэффициента усиления замкнутой цепи без регулирования практически не представляется возможным, во всех случаях работа такой системы будет неустойчивой, она либо остановится, либо пойдет в разнос.

Для того чтобы этого не произошло, в систему, охваченную положительной обратной связью, обязательно должен быть включен регулятор, задачей которого является ограничение той части энергии, которая возвращается на вход системы через обратную связь. Такой регулятор может быть выполнен несколькими способами.

Первый способ – простое ограничение величины обратной энергии некоторым насыщающимся звеном. Таким звеньями могут являться любые звенья с нелинейными характеристиками типа насыщения железа или стабилитронов. В случае использования трансформатора с железным сердечником увеличение напряжения в первичной обмотке после насыщения сердечника не приводит к увеличению напряжения на вторичной обмотке. В случае использования стабилитронов избыточная энергия направляется в обход цепи обратной связи, чем и ограничивается поступление энергии на вход системы.

Вторым способом является применение нелинейной отрицательной обратной связи. По цепи отрицательной обратной связи на вход системы должен поступать второй поток энергии со знаком, противоположным знаку потока энергии, поступающей по цепи положительной обратной связи на тот же вход. Если процесс колебательный, то обратный поток должен поступать на вход в противофазе потоку положительной энергии, если обратная связь выполнена в виде напряжения положительной полярности, то по цепи отрицательной связи должна поступать в ту же точку энергия в виде напряжения отрицательной полярности. В каждом конкретном случае вид энергии, используемой в цепях положительной и отрицательной связи, устанавливается конкретно, в соответствии с принципом действия системы.

Варианты функционирования отрицательной обратной связи могут быть также различны. Ее параметры могут быть выбраны, например, такими, что она вообще не включается, пока уровень энергии в положительной обратной связи не достигнет определенного порога, только после этого она начинает вмешиваться в процесс. Такие или другие варианты регулирования процессов достаточно подробно описаны теорией автоматического регулирования, без использования которой трудно построить рассматриваемые системы даже в случае нахождения всех принципиальных решений.

В наш век высоких технологий трудно представить свою жизнь без электричества. На этом ресурсе работает практически вся наша домашняя техника, без которой жизнь станет более сложной и менее интересной. Однако с сегодняшними ценами на электричество, многие задумываются о возможности получать подобный вид энергии бесплатно. Поэтому, сегодня мы решили вам рассказать, о нескольких интересных вариантах. Нет, мы не будем описывать способы обмана коммунальных служб или убеждать вас, что без большинства электроприборов можно обойтись. Мы расскажем вам о четырех самых необычных вариантов получения необходимого всем природного ресурса.

Немного о том, что такое бесплатное электричество

На данный момент стоимость коммунальных услуг достаточно высока. Поэтому многие люди задумываются об источниках необходимых ресурсов, более дешевых, чем централизованный газ и электроэнергия.

Для обеспечения дому тепла с минимальной затратой средств был изобретен твердотопливный пиролизный котел . В данном агрегате газ образуется за счет перегорания твердого топлива. Этого прибора достаточно для обогрева целого дома.

Более того, многие твердотопливные печи имеют варочные поверхности и духовки. Используя такой прибор, вы можете вовсе отказаться от проведения газа в свой дом.

С электричеством все намного сложнее. На данный момент в современных домах столько электроприборов, что обеспечить достаточное количество энергии альтернативными способами для них всех, действительно тяжело. Однако вы можете с помощью необычных способов получения бесплатной электроэнергии, сделать максимально дешевым обслуживание некоторой части электроприборов. Давайте посмотрим, что это за способы.

Какое может быть бесплатное электричество для дома:

  • Самым распространенным считается электричество, полученное от энергии солнца;
  • Также пользуется дармовая энергия, получаемая из воздуха и атмосферы;
  • Очень интересно получение статического электричества из земли;
  • Электрический ток также можно вырабатывать из эфира;
  • На грани фантастики кажется халявное электричество из нечего;
  • Как оказалось, из магнитного поля тоже можно добывать электричество;
  • Возможна добыча электричества из дерева, воды и других подручных средств.

Некоторые из этих способов способны обеспечить электричеством лишь маленькую лампочку. Других хватит, чтобы заставить работать как минимум половину электроприборов в доме.

Домашний генератор электроэнергии «на халяву» создать невозможно. Ведь на материал для таких устройств нужно потратить некоторые деньги. Поэтому, говоря: «Выработка электричества на шару», мы имеем ввиду дешевое электричество, если, конечно, речь идет не про Anticlove.


Сегодня мы расскажем вам о нескольких, самых перспективных альтернативных способах добычи электричества. Также мы поговорим о возможности получения электроэнергии из нечего.

Можно ли получать электричество из земли

Одним из самых интересных и невероятных способов, как добыть электричество, является его получение из земли. Интересно? Еще бы! Ведь в отличие от энергии из атомных частицу и солнечных батарей , такой способ добычи энергии пока не получил всеобщего распространения.

В домашних условиях можно получить не только свет, но и необходимое количество тепла. Для этого можно использовать твердотопливные печи или котлы.

Вам, наверное, интересно, как получают электричество из земли. Здесь все не так просто. Дело в том, что земля не только сочетает в себе три среды, ведь между земляными частицами находятся молекулы воды и воздуха, но и состоит из структур, мицеллы и гумуса, имеющих разные потенциалы.

Из за этого внешняя оболочка земли имеет отрицательный заряд, а внутренняя – положительный. Как вы знаете, положительные частицы притягиваются к отрицательным. За счет этого в почве происходят электрические процессы. Попробовать сделать земляную электростанцию можно своими руками. Для этого нужно знать основы электротехники, но мы вам расскажем краткое пособие по созданию такой конструкции. Итак, как можно добыть земное электричество.

Схема создания земляной электростанции:

  • В землю помещается металлический проводник;
  • К проводнику присоединяется два других проводника ноль и фаза;
  • По этим проводникам электричество течет в дом.

Конечно, такая схема не позволит вам получить свет на весь дом. Ведь в лучшем случае вы получите всего 20 вольт, которых будет достаточно для того, чтобы зажечь пару лампочек. Однако усовершенствуя систему, вы сможете снять нагрузку с части электроприборов.

Способы получения электричества из воздуха

Атмосферное электричество можно получать в больших количествах. К тому же данный вариант обеспечения дома не относится к разряду «необычные способы». Ведь все знают о существовании ветряных электростанций.

Существуют целые поля ветряных электростанций. Они похожи на ряды с огромными вентиляторами. Однако минус такой системы заключается в том, что она вырабатывает электроэнергию. Только когда есть ветер.

На самом деле, взять электроэнергию из атмосферы можно не только из ветра. Есть и другие более интересные способы. Ведь на самом деле воздух – эта самая заряженная стихия.

Источники освещения, работающие от атмосферы:

  1. Грозовые батареи притягивают молнии. Они состоят из заземления и металлического проводника, между которыми во время удара молнии накапливается свободная энергия. Однако использование такого способа не распространено потому, что невозможно предсказать величину накопившейся электроэнергии, а также из-за опасности этого изделия.
  2. Ветрогенираторы – это известный всем способ добычи энергии. Вы можете сделать такую станцию и для себя. Однако в этом случае вам придется рассчитать необходимое количество приборов, а также установить их в месте, которое будет максимально ветряным.
  3. Тороидальный генератор Стивена Марка вырабатывает электричество не сразу, а через некоторое время после его включения. Такое автономное устройство состоит из нескольких катушек, между которыми образуется резонансные частоты и магнитный вихрь. Такие самодельные приборы добывают достаточно электричества для обслуживания одного электроприбора.
  4. Прибор Капанадзе , вопреки мнению многих состоит не из магнита и проволоки, он сделан по тому же принципу, что и трансформатор Тесла. Он получает эфирное электричество и работает без топлива. Однако устройство такого прибора запатентовано и засекроечено.


Такие варианты добычи электричества из атмосферы очень перспективны. Это новые способы получения этого ресурса, некоторые из которых уже используются в Европе. Некоторые из них можно собрать самому и вполне возможно, все люди будут получать электричество даром из таких приборов.

Халявное электричество из солнца

Большой популярностью в Европе пользуются солнечные батареи. Вы наверняка слышали об этом способе добычи электричества. И это действительно работает, и не является вариантом, как заработать на стекле.

Если вам интересно лучше разобраться в способах получения электричества. Обратитесь к Валерию Белоусову, который выкладывает свои видео на Ютубе.

Конечно, чтобы пользоваться такой энергией, нужно сначала серьезно потратиться, ведь солнечные батареи стоят недешево, а чтобы обеспечить такой энергией весь дом, их нужно будет купить много. Также нужно учитывать, что если ваш дом в лесу преобразовать солнечную энергию в электричество не получится. Проблемы могут возникнуть и в холодное время года. Однако у солнечных станций есть несколько весомых преимуществ.

Преимущества солнечных электростанций:

  • Солнечная энергия вечная;
  • Она не выделяет в среду вредных веществ и не способствует накоплению радиоволн;
  • Вы сможете заранее рассчитать, сколько сможете получить энергии от того или иного количества батарей;
  • Цена потраченная на батареи со временем окупится за счет сэкономленных на электроэнергии средств.

Солнечная электроэнергия – это отличная альтернатива централизованному электричеств. С ее помощью может быть обеспечена вся ваша электрика.

Электричество из воздуха своими руками: схема (видео)

Также стоит отметить о возможности получения электроэнергии из ниоткуда. Один предприимчивый датчик решил получить электричество из пирамиды, и к его удивлению после создания такой конструкции на участке и подключению ее к светильникам, лампочки загорелись. На самом деле данная энергия берется из земли, а не из «ничего», и как сделать такой прибор повествует специализированная книга.

Трансформатор Тесла на качере Бровина своими руками и съем энергии.

Радиантная энергия. Беспроводная передача энергии.

Энергия эфира.

Из чего состоит вселенная? Вакуум, то есть пустота, или эфир - нечто из которого состоит все сущее? В подтверждение теории эфира Интернет предложил личность и исследования физика Николы Тесла и естественно его трансформатор,представленный классической наукой, как некое высоковольтное устройство по созданию спец-эффектов в виде электрических разрядов.

Особых пожеланий, предпочтений по длине и диаметру катушек трансформатора Тесла не нашел. Вторичная обмотка была намотана проводом 0,1мм на трубе пвх диаметром 50мм. Так сложилось что длина намотки составила 96 мм. Намотка велась против часовой стрелки. Первичная обмотка - медная трубка от холодильных установок диаметром 5 мм.

Запустить собранный коллайдер, можно простым способом. В интернет предлагаются схемы на резисторе, одном транзисторе и двух конденсаторах - качер Бровина по схеме Михаила (на форумах под ником МАГ). Трансформатор тесла после установки направления витков первичной обмотки так, как и на вторичной заработал, о чем свидетельствуют - небольшой объект похожий на плазму на конце свободного провода катушки, лампы дневного света на расстоянии горят, электричество, вряд ли это электричество в обычном понимании, по одному проводу в лампы поступает. Во всем металлическом находящемуся рядом с катушкой присутствует электростатическая энергия. В лампах накаливания - очень слабое свечение синего цвета.

Если цель сборки трансформатора тесла - получение хороших разрядов, то данная конструкция, на основе качера Бровина, для этих целей абсолютно не пригодна. То же самое мугу сказать об аналогичной катушке длинной 280 мм.

Возможность получения обычного электричества. Замеры осциллографом показали частоту колебаний на катушке съема порядка 500 кГц. Поэтому в качестве выпрямителя был использован диодный мост из полупроводников используемых в импульсных источниках питания. В начальной версии - автомобильные диоды шоттки 10SQ45 JF, затем быстрые диоды HER 307 BL.

Ток потребления всего трансформатора без подключения диодного моста 100 ма. При включении диодного моста в соответствии со схемой 600 ма. Радиатор с транзистором КТ805Б теплый, катушка съема, слегка греется. Для катушки съема использована медная лента. Можно использовать любой провод 3-4 витка.
Ток съема при включенном двигателе и только что заряженнном аккумуляторе порядка 400 ма, Если подключить двигатель на прямую к аккумулятору, ток потребления двигателя ниже. Измерения проводились стрелочным амперметорм советского производства, поэтому на особую точность не претендуют. При включенной тесле абсолютно везде (!) присутствует "горячая" на ощупь энергия.

Конденсатор 10000мF 25V без нагрузки заряжается до 40V, старт двигателя происходит легко. После запуска двигателя падение напряжения, двигатель работает на 11.6V.

Напряжение меняется при перемещении катушки съема вдоль основного каркаса. Минимальное напряжение при размещении катушки съема в верхней части и соответственно максимальное в нижней его части. Для данной конструкции максимальное значение напряжения удавалось получить порядка 15-16V.

Максимального съема по напряжению с использованием диодов шоттки можно добиться располагая витки катушки съема вдоль вторичной обмотки трансформатора Теслы, максимального съема по току - спираль в один виток перпендикулярно вторичной обмотки трансформатора Теслы.

Разница, в использовании диодов шоттки и быстрых диодов значительна. При использовании диодов шоттки, ток примерно раза в два выше.

Любые усилия по съему или работа в поле трансформатора тесла уменьшают напряженность поля, уменьшается заряд. Плазма выступает в роле индикатора наличия и силы поля.

На фотографиях объект, похожий на плазму, отображается лишь частично. Предположительно, для нашего глаза смена 50 кадров в секунду не различима. Тоесть набор постоянно сменяющихся объектов составляющих "плазму" воспринимается нами как один разряд. На боолее качественной аппаратуре съемка не проводилась.
Аккумулятор, после взаимодействия с токами теслы стремительно приходит в негодность. Зарядное устройство дает полную зарядку, но емкость аккумулятора падает.

Парадоксы и возможности.

При подключении электролитического конденсатора 47 мкф 400 вольт к аккумулятору или любому источнику постоянного напряжения 12В заряд конденсатора не привысит значение источника питания. Подключаю конденсатор 47 мкф 400 вольт к постоянному напряжению порядка 12В, полученного диодным мостом с катушки съема качера. Через пару-тройку секунд подключаю автомобильную лампочку 12В/21ВТ. Лампочка ярко вспыхивает и сгорает. Конденсатор оказался заряжен до напряжения более 400 вольт.

На осциллографе виден процесс зарядки электролитического конденсатора 10000 мкф, 25V. При постоянном напряжении на диодном мосте порядка 12-13 вольт, конденсатор заряжается до 40-50 вольт. При том же входном, переменном напряжении, конденсатор в 47 мкф 400V, заряжается до четырехсот вольт.

Электронное устройство съема дополнительной энернии с конденсатора должно работать по принципу сливного бочка. Ждем зарядки конденсатора до определенного значения либо по таймеру разряжаем конденсатор на внешнюю нагрузку (сливаем накопившуюся энергию). Разряд конденсатора соответствующей емкости даст хороший ток. Таким образом можно получить стандартное электричество.

Съем энергии.

При сборке трансформатора Тесла установлено, что статическое электричество, получаемое с катушки тесла, способно заряжать конденсаторы до значений, превышающих их номинал. Целью эксперимента является попытка выяснить заряд каких конденсаторов, до каких значений и при каких условиях возможен максимально быстро.

Скорость и возможность заряда конденсаторов до предельных значений определеят выбор выпрямителя тока. Проверены следующие выпрямители, показанные на фотографии (слева на право по эффективности работы в данной схеме) - кенотроны 6Д22С, демпферные диоды КЦ109А, КЦ108А, диоды шоттки 10SQ045JF и прочие. Кенотроны 6Д22С рассчитаны на напряжения 6,3В их необходимо включать от двух дополнительных аккумуляторов по 6,3В либо от понижающего трансформатора с двумя обмотками на в 6,3В. При последовательном подключении ламп к аккумулятору 12В, кенотроны работают не равнозначно, отрицательное значение выпрямленного тока необходимо соединить с минусом аккумуляторной батареи. Прочие диоды, в том числе и "быстрые" - малоэффективны, поскольку имеют незначительные обратные токи.

В качестве разрядника использована свеча зажигания от автомобиля, зазор 1-1,5мм. Цикл работы устройства следующий. Конденсатор заряжается до значений напряжения достаточного для возникновения пробоя через искровой промежуток разрядника. Возникает ток высокого напряжения способный зажечь лампочку накаливания 220В 60ВТ.

Ферриты используются для усиления магнитного поля первичной катушки - L1 и вставляются внутрь трубки ПВХ на которой намотан трансформатор тесла. Следует обратить внимание, что ферритовые наполнители должны находиться под катушкой L1 (медная трубка 5 мм) и не перекрывать весь объем трансформатора тесла. В противном случае генерация поля трансформатором Тесла срывается.

Если не использовать ферриты с конденсатором 0,01 мкф лампа зажигается с частотой прядка 5 герц. При добавлении ферритового сердечника (кольца 45мм 200НН) искра стабильна, лампа горит с яркостью до 10 процентов от возможной. При увеличении зазора свечи, происходит высоковольтный пробой между контактами электролампы к которым крепится вольфрамовая нить. Накал вольфрамовой нити не происходит.

При предлагаемых, емкости конденсатора более 0,01 мкф и зазоре свечи 1-1.2 мм, по цепи идет преимущественно стандартное (кулоновское) электричество. Если уменьшить емкость конденсатора, то разряд свечи будет состоять из электростатического электричества. Поле генерируемое трансформатором тесла в данной схеме, слабое, лампа светиться не будет. Краткое видео:

Вторичная катушка трансформатора тесла, представленая на фотографии, намотана проводом 0,1 миллиметра на трубке пвх с внешним диаметром 50 миллиметров. Длинна намотки 280 мм. Величина изолятора между первичной и вторичной обмотками 7 мм. Какого либо прироста мощности по сравнению с аналогичными катушками длинной намотки 160 и 200 мм. не отмечается.

Ток потребления устанавливается переменным резистором. Работа данной схемы стабильна при токе в пределах двух ампер. При токе потребления более трех ампер или меннее одного ампера, генератрация стоячей волны трансформатором Тесла срывается.

При увеличении тока потребления с двух до трех ампер, мощность отдаваемая в нагрузку увеличивается на пятьдесят процентов, поле стоячей волны усиливается,лампа начинает гореть ярче. Следует отметить только 10 процентное увеличения яркости свечения лампы. Дальнейшее увеличение тока потребления перерывает генерацию стоячей волны либо сгорает транзистор.

Начальный заряд аккумулятора составляет 13,8 вольта. В процессе работы данной схемы, аккумулятор заряжается до 14.6-14.8V. При этом емкость аккумулятора падает. Общая продолжительность аккумулятора под нагрузкой составляет четыре-пять часов. В итоге аккумулятор разряжается до 7 вольт.

Парадоксы и возможности.

Результат работы данной схемы - стабильный высоковольтный искровой разряд. Представляется возможным запуск классического варианта трансформатора Тесла с генератором колебаний на искровом промежутке (разряднике) SGTC (Spark Gap Tesla Coil) Теоретически: это замена в схеме лампы накаливания на первичную катушку трансформатора Тесла. Практически: при установке в цепь вместо электролампы трансформатора Тесла такого же как на фотографии идет пробой между первичной и вторичной обмотками. Высоковольтные разряды до трех саниметров. Требуется подобрать расстояние между первичной и вторичной обмотками, величину искрового промежутка, емкость и сопротивление цепи.

Если использовать сгоревшую электрическую лампу, то между проводниками к которым крепится вольфрамовая нить, возникает устойчивая высоковольтная электрическая дуга. Если напряжение разряда свечи зажигания можно оценить примерно в 3 киловольта, то дугу лампы накаливания можно оценить в 20 киловольт. Так как лампа имеет емкость. Данная схема может быть использована как умножитель напряжения на основе разрядника.

Техника безопасности.

Какие либо действия со схемой необходимо проводить только после отключения трансформатора тесла от источника питания и обязательной разрядки всех конденсаторов, находящихся вблизи трансформатора Тесла.

При работе с данной схемой настоятельно рекомендую использовать разрядник, постоянно подключенный параллельно конденсатору. Он выполняет роль предохранителя от перенапряжений на обкладках конденсатора, способных привести его к пробою либо взрыву.

Разрядник не даёт зарядиться конденсаторам до максимальных значений по напряжению, поэтому разряд высоковольтного конденсаторов менее 0,1 мкф при наличии разрядника на человека опасен, но не смертелен. Величину искрового промежутка руками не регулировать.

Пайкой в поле качера электронных компонентов не заниматься.

Радиантная энергия. Никола Тесла.

В настоящее время подменяются понятия и радиантной энергии дается иное определение, отличное от свойств описанных Николой Тесла. В наши дни радиантная энергия это - энергия открытых систем таких как энергия солнца, вода, геофизические явления которые могут использованы человеком.

Если вернутся к первоисточнику. Одно из свойств радиантного тока демонстрировалось Николой Тесла на устройстве - повышающий трансформатор, конденсатор, разрядник подключенный к медной U-образной шине. На короткозамкнутой шине размещены лампы накаливания. По классическим представлениям, лампы накаливания гореть не должны. Электрический ток должен идти по линии с наименьшим сопротивлением, тоесть по меденой шине.

Для воспроизведения эксперимента был собран стенд. Повышающий трансорматор 220В-10000В 50ГЦ типа ТГ1020К-У2. Во всех патентах Н.Тесла рекомендует в качестве источника питания использовать положительное (однополярное), пульсирующее напряжение. На выходе высоковольтного трансформатора установлен диод, сглаживающий отрицательные пульсации напряжения. На этапе начала заряда конденсатора ток, идущий через диод, сопоставим с коротким замыканием, поэтому для предотвращения выхода из строя диода последовательно включен резистор 50К. Конденсаторы 0.01мкф 16КВ, включены последовательно.

На фотографии, вместо медной шины, представлен соленоид намотанный медной трубкой диаметром 5мм. К пятому витку соленоида подключен контакт лампочки накаливания 12В 21/5ВТ. Пятый виток соленоида (желтый провод), выбран экспериментально, чтобы лампа накаливания не перегорела.

Можно допустить, факт наличия соленоида, вводит в заблуждение многих исследователей пытающихся повторить устройства Дональда Смита (американский изобретатель СЕ устройств) Для полной аналогии с классическим вариантом, предложенным Н.Теслой, соленоид был развернут в медную шину, лампа накаливания горит с такой же яркостью и перегорает при перемещении ближе к концам медной шины. Таким образом, математические выкладки, которыми пользуется американский исследователь слишком упрощены и не описывают процессы происходящие в соленоиде. Расстояние искрового промежутка разрядника не значительно влияет на яркость свечения электролампы, но влияет на рост потенциала. Между контактами электролампы, на которых закреплена вольфрамовая нить, происходит высоковольтный пробой.

Логичным продолжением соленоида в качестве первичной обмотки является и классический вариант трансформатора Н.Тесла.

Что за ток и каковы его характеристики на участке между разрядником и обкладкой конденсатора. То есть в медной шине в схеме предлагаемой Н.Тесла.

Если длина шины порядка 20-30 см., то электрическая лампа, закрепленная на концах медной шины не горит. Если размер шины увеличить до полутора метров лампочка начинает гореть, вольфрамовая нить раскаляется и светится привычным ярко-белым светом. На спирале лампы (между витками вольфрамовой нити) присутствует голубоватое пламя. При значительных "токах", обусловленных увеличением длины медной шины температура увеличивается, лампа темнеет, вольфрамовая нить точечно выгорает. Ток электронов в цепи прекращается, на участке выгорания вольфрама появляется энергетическая субстанция холодного, голубого цвета:

В эксперименте использовался повышающий трансформатор - 10КВ, с учетом диода максимальное напряжение составит 14КВ. По логике - максимальный потенциал всей схемы должен быть не выше этого значения. Так и есть, но только в разряднике, где возникает искра порядка полутора сантиметров. Слабый высоковольтный пробой на участках медной шины в два и более сантиметров говорит о наличии потенциала более 14 КВ. Максимальный потенциал в схеме Н.Тесла у лампочки, которая ближе к разряднику.

Конденсатор начинает заряжаться. На разряднике идет рост потенциала, возникает пробой. Искра обуславливает появление электродвижущей силы определенной мощности. Мощность это произведение тока на напряжение. 12 вольт 10 ампер (толстый провод) то же, что и 1200 вольт 0,1 ампер (тонкий провод). Разница состоит в том, что для передачи большего потенциала требуется меньшее число электронов. Для придачи значительному числу "медленных" электронов в медной шине ускорения (больший ток) требуется время. На данном участке цепи происходит перераспределение - возникает продольная волна увеличения потенциала при незначительным росте тока. На двух различных участках медной шины образуется разность потенциалов. Эта разность потенциалов и обуславливает свечение лампы накаливания.На медной шине наблюдается скин эффект (движение электронов по поверхности проводника) и значительный потенциал, больший чем заряд конденсатора.

Электрический ток обусловлен наличием в кристаллических решётках металлов подвижных электронов, перемещающихся под действием электрического поля. В вольфраме, из которого сделана нить лампы накаливания, свободные электроны менее подвижны чем в сербре, меди или алюминии. Поэтому движение поверхностного слоя электрнов фольфрамовой нити вызывает свечение лампы накаливания. Вольфрамовая нить лампы накаливания разорвана, потенциальный барьер выхода из металла электроны преодолевают, возникает электронаая эмиссия. Электронны находятся в области разрыва вольфрамовой нити. Энергетическая субстанция голубого цвета следствие и одновременно причина поддержание тока в цепи.

Говорить о полном соответствии полученного тока с радиантным током, описанным Н.Тесла преждевременно. Н.Тесла указывает, что подключенные к медной шине электролампы не нагревались. В прооведенном эксперементе электрические лампы нагреваются. Это говорит о движении электрнов вольфрмаовой нити. В эксперементе следует добиться полного отсутствия электрического тока в цепи: Продольная волна роста потенцила широкого частотного спектра искры без токовой составляющей.

Заряд конденсаторов.

На фотографии показана возможность заряда высоковольтных конденсаторов. Заряд осуществляется с помощью электростатического электричесвтва трансформатора Тесла. Схема и принципы съема описаны в разделе съем энергии.

Ролик демонстрирующий заряд конденсатора 4Мкф можно посмотреть по ссылке:

Разрядник, четыре конденсатора КВИ-3 10КВ 2200ПФ и два конденсатора емкостью 50МКФ 1000В. включены последовательно. В разряднике идет постоянный искровой разряд сатистического электричества. Разярядник собран из клемм магнитного пускателя и имеет более высокое сопротивление, чем медная проволока. Величина искрового промежутка разрядника - 0,8-0,9мм. Величина промежутка между контактами разрядника на основе медной проволоки, подключенной к конденсаторам 0,1 и менее мм. Искровой разряд статического электричества между контактами медной проволоки отсутствует, хотя искровой промежуток меньше, чем в основном разряднике.

Конденсаторы заряжаются до напряжений более 1000В, оценить величину напряжения нет технической возможности. Следует отметить, при неполном заряде конденсатора, например до 200В, тестер показывает колебания напряжения от 150В до 200В и более вольт.

При накоплении заряда конденсаторы заряжаются до напряжений более 1000В, происходит пробой промежутка устанавливаемого медной проволокой подключенной к клемам конденсатора. Пробой сопровождается вспышкой и громким взрывом.

При включении схемы, сразу на клемах конденсатора появляется и начинает рости высокое напряжение и далее идет заряд конденсатора. То что конденсатор заряжен можно определить по уменьшению и последующему прекращению электростатической искры в разряднике.

Если убрать дополнительный разрядник из медной проволоки, подключенной к высоковольтным конденсаторам, вспышки происходят в основном разряднике.

Конденсатор используемый в ролике, МБГЧ-1 4 мкф * 500В через 10 минут непрерывной работы - вздулся и вышел из строя, чему предшествовало бульканье масла.

При работе схемы на всех участках присутствует электростатическое электричество, о чем свидетельствует свечение неоновой лампочки.

Если заряжать конденсаторы высокой емкости без разрядника, при разряде конденсаторов выходят из строя выпрямительные диоды.

Беспроводная передача энергии.

Оба соленоида намотаны на трубе пвх с внешним диаметром 50 мм. Горизонтальный солионоид (передатчик) намотан проводом 0,18 мм, длина 200 мм., расчетная длина провода 174,53м. Вертикальный соленоид (приемник) намотан проводом 0,1 мм., длина 280 мм, расчетная длина провода 439,82м.

Ток потребления схемы менее одного ампера. Электролампа 12 вольт 21 ватт. Яркость свечения лампы составляет около 30% в сравнении с непосредственным подключением к аккумулятору.

На увеличение яркости свечения лампы, помимо перпендикулярного размещения соленоидов, влияет взаимное расположение проводников - конец соленоида передатчика (красная изолента) и начало солиноида приемника (черная изолента). При близком, парралельном их размещении яркость свечения лампы увеличивается.

Заряд конденсаторов в ранее рассмотренной схеме возможен через катушку посредник без непосредственной связи блока съема (высоковольтный конденсатор и выпрямительные диоды) с трансформатором тесла. Эффективность беспроводной передачи энергии порядка 80-90% в сравнении с непосредственным подключением блока съема к соленоиду-передатчику. На фотографии показано наиболее эффективное расположение соленоидов друг относительно друга. Поскольку расположение соленоидов перпендикулярно, передача энергии посредством магнитного поля по классическим представлениям невозможна. Визуально оценить энергетику процесса возможно просмотрев фильм:

Верхний конец соленоида-приемника соеденен с выпрямителями КЦ109А, нижний не соеденен ни с чем. При работающей схеме в нижней части соленоида-приемника наблюдается незначительная искра. Верхний конец соленоида-передатчика в воздухе, не соеденен ни с чем.
Ток потребления 1А. В качестве катушки посредника проверялись соленоиды намотанные проводом 0,1мм, длина 200 и 160 мм. Конденсатор до напряжения необходимого для пробоя разрядника не заряжается. Соленоид-приемник представленный на фотографии дает наилучший результат. Ферритовые наполнители в передатчике и приемнике не использовались.

С уважением, А. Мищук.

В условиях современного мира, когда постоянно дорожают энергоносители, многие люди обращают свои взоры на возможности сэкономить свои средства посредством использования каких-либо альтернативных источников электроэнергии.

Данная проблема занимает умы не только доморощенных изобретателей, которые пытаются найти решение дома с паяльником в руках, но и настоящих учёных. Это вопрос, который муссируется уже давно, и предпринимаются самые разные попытки для нахождения новых источников электричества.

Можно ли получить электричество из воздуха

Возможно, многие могут подумать, что это откровенный бред. Но реальность такова, что получить электроэнергию из воздуха возможно. Существуют даже схемы, которые могут помочь создать устройство, способное осуществить получение этого ресурса буквально из ничего.

Принцип работы такого устройства заключается в том, что воздух является носителем статического электричества, просто в очень малых количествах, и если создать подходящее устройство, то вполне можно накапливать электричество.

Опыты известных учёных

Можно обратиться к трудам уже известных учёных, которые в прошлом пытались получать электричество буквально из воздуха. Одним из таких людей является знаменитый учёный Никола Тесла. Он был первым человеком, который задумался о том, что электроэнергию можно получить, грубо говоря, из ничего.

Конечно, во времена Тесла не было возможности записать все его опыты на видео, поэтому на данный момент специалистам приходится воссоздавать его устройства и результаты его исследования согласно его записям и старым свидетельствам его современников. И, благодаря многим опытам и исследованиям современных учёных, можно соорудить устройство, которое позволит осуществить получение электричества.

Тесла определил, что между основанием и поднятой металлической пластиной существует электрический потенциал, представляющий собой статическое электричество, также он определил, что его можно накапливать.

Впоследствии Никола Тесла смог сконструировать такое устройство, которое смогло накапливать незначительное количество электроэнергии, используя лишь тот потенциал, который содержится в воздухе. Кстати, сам Тесла предполагал, что наличием электричества в своём составе, воздух обязан солнечным лучам, которые при пронизывании пространства буквально делится своими частицами.

Если обратиться к изобретениям современных учёных, то можно привести пример устройства Стивена Марка, который создал тороидальный генератор, позволяющий удерживать намного больше электроэнергии, в отличие от простейших изобретений подобного рода. Его преимущество заключается в том, что это изобретение способно обеспечить электричеством не только слабые осветительные приборы, но и довольно серьёзные бытовые приборы. Этот генератор способен осуществлять свою работу без подпитки в течение довольно длительного времени.

Простые схемы

Существуют довольно простые схемы, которые помогут создать устройство, способное осуществлять получение и накопление электрической энергии, которая содержится в воздухе. Этому способствует наличие в современном мире множество сетей, линий электропередач, которые способствуют ионизации воздушного пространства.


Создать устройство, получающее электричество из воздуха, можно и своими руками, используя лишь довольно простую схему. Также существуют различные видео, которые смогут стать той необходимой инструкцией для пользователя.

К сожалению, создать мощный прибор своими руками весьма непросто. Более сложные устройства предполагают использование более серьёзных схем, что иногда существенно затрудняет создание такого прибора.

Можно попытаться создать более сложный прибор. В интернете приведены более сложные схемы, а также видеоинструкции.

Видео: самодельный генератор свободно энергии